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In this paper we consider a nonlocal evolution equation in one dimension,
which describes the dynamics of a ferromagnetic system in the mean field
approximation. In the presence of a small magnetic field, it admits two station-
ary and homogeneous solutions, representing the stable and metastable phases
of the physical system. We prove the existence of an invariant, one dimensional
manifold connecting the stable and metastable phases. This is the unstable
manifold of a distinguished, spatially nonhomogeneous, stationary solution,
called the critical droplet. (4, 10) We show that the points on the manifold are
droplets longer or shorter than the critical one, and that their motion is very
slow in agreement with the theory of metastable patterns. We also obtain a new
proof of the existence of the critical droplet, which is supplied with a local
uniqueness result.
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1. INTRODUCTION

In this paper we study the metastable behavior in one dimension of the
following evolution equation for the scalar field m=m(t, x):

“m
“t

=−m+tanh{b[J f m+h]}, (t, x) ¥ R+ × Rd, (1.1)

where b > 1, h > 0, and J is a nonnegative, even function, with support in
the unit interval, normalized to have integral 1, i.e., > dx J(x)=1, and



J f m denotes the convolution between J and m. Equation (1.1) has been
derived in ref. 11, as a scaling limit for the empirical magnetization, from
an Ising spin system with Glauber dynamics and Kac potentials. (18–20)

Therefore m represents the local magnetization density, J is related to the
(long range) ferromagnetic coupling of the spin–spin interaction, b is the
inverse temperature and h an external magnetic field. The appearance of
metastable states is a common feature of all the mean field theories of
phase transition. This fact is reflected in (1.1): given b > 1, there is an
hb > 0 such that for h ¥ [0, hb] there are three and only three constant
stationary solutions, denoted by:

m−
b, h < m0

b, h [ 0 < m+
b, h.

For h > 0, |m−
b, h | < m+

b, h, and m0
b, h < 0; for h=0, m0

b, h=0, and m+
b, h=−mb, h

q mb. The two phases ± mb are thermodynamically stable at h=0, while
m0

b, h=0 is unstable. For h > 0, m+
b, h is the only stable phase, m0

b, h is still
unstable, while m−

b, h becomes metastable.
We prove the existence of an invariant manifold connecting the stable

and metastable phases. This manifold is the union of two heteroclinic
orbits, connecting the above phases with a particular, nonhomogeneous
stationary solution to (1.1), which we call the critical droplet for the
following reason.

Our ultimate purpose is to give a complete description of the tunneling
from the metastable to the stable phase for the underlying stochastic spin
dynamics. According to general heuristic arguments, the transition occurs
through the nucleation of a sufficiently large droplet of the stable phase,
which will start to grow undergoing an irreversible process leading to the
stable phase everywhere. On the contrary, small droplets will have a ten-
dency to shrink. According to the pathwise approach to metastability in
the case of reversible dynamics, (7, 16, 21) our results will play a central role in
determining the typical path of the tunneling transition, which will be the
subject of future works.

The critical droplet is a spatially nonhomogeneous, symmetric func-
tion q which is a stationary solution to Eq. (1.1) close to the metastable
state at infinity; namely q solves:

q(x)=tanh{b[(J f q)(x)+h]}, x ¥ R, lim
|x| Q .

q(x)=m−
b, h. (1.2)

The existence of homoclinic type solutions like q has been firstly proved in
ref. 4 for a general class of bistable integral equations (and general kernels J),
which also give the stationary solutions of a different class of nonlocal
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evolution equations introduced in ref. 1. For our particular equation the
existence has also been proved in ref. 10 for b > 1 and h small enough.
Both the results in ref. 10 and ours relay on the spectral estimates given
in ref. 9 that are proved only for h small and for positive, monotonic,
compact support J. However this is enough for our purposes since the
range of the spin–spin interaction is finite and the metastable behavior is
caught only for h small.

In ref. 10 it has been proved that when h is very small the region where
q is close to the stable phase is of order |log h|, while the length of the
transition layers from this region to the one where the metastable phase
dominates is of order 1. The layers may be approximately described as
standing waves of Eq. (1.1) with h=0. These are translations and/or
reflections of the instanton m̄(x), a strictly increasing and antisymmetric
function solving:

m̄(x)=tanh{b(J f m̄)(x)}, x ¥ R, lim
x Q ± .

m̄(x)= ± mb. (1.3)

All the translations of q are stationary solutions, and it is not known
whether these are the only (spatially nonhomogeneous) solutions to (1.2).
In ref. 10 the existence of the bump is proved by applying the Newton
method to find the zeros of the map defined (on the space of continuous
and symmetric functions) by the r.h.s. of (1.1). Consequence of this
approach is the lack of any uniqueness result. We partially fill up this gap
here by giving a different proof which is also supplied with a local unique-
ness result. We also give a detailed description of the spatial structure of
the bump, by showing it is a strictly decreasing function for x > 0, con-
verging exponentially fast to the metastable phase as |x| Q+..

The existence of an invariant, one dimensional, unstable manifold W

through q, follows in a standard way (see, for instance, ref. 17) from the
existence, proved in ref. 9, of an isolated, simple, positive eigenvalue of the
operator obtained by linearizing (1.2) around the critical droplet q. Never-
theless we give in Section 6 an explicit construction needed to establish the
other results. This manifold consists of the union of two branches W±. The
points on W− (resp. W+) are symmetric functions, nonincreasing for x > 0,
strictly smaller (resp. larger) than q. We thus refer to the points on W−

(resp. W+) as the sub-critical (resp. super-critical) droplets. In the branch
W− where the length of the droplets is shorter than that of q, the evolution
shrinks it further, while it grows if it is larger. This shrinking (resp.
growing) process goes on indefinitely and we actually prove the branch W−

(resp. W+) connects the bump with the metastable (resp. stable) phase. We
prove this last result by using the comparison theorem which holds for
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Eq. (1.1). We construct suitable upper solutions for the sub-critical droplet
and lower solutions for the super-critical one that converge to the meta-
stable, respectively stable, phase as t diverges. This method does not allow
to catch the actual speed of convergence to the metastable and stable
phases, which will be the subject of a future work.

However we have a detailed description of large part of the relaxation
process. The situation is in fact similar to that of the invariant manifolds
for metastable patterns in solutions of the singularly perturbed Ginzburg–
Landau equation. (5, 6, 15) We show that, for h very small, a large part, Wa ,
of the unstable manifold W consists of droplets with two well-separated
transition layers, whose patterns are described approximately by the stand-
ing waves. The dynamics on Wa is then reduced to the motion of the layer
locations, ± t, which can be described, to high accuracy, by the ordinary
differential equation:

ṫ=−mKe−2at+2mb mh, (1.4)

where the positive coefficients K, a, and m depend on J and b. Thus the
velocity turns out to be the sum of two terms. The first one is an attractive
term, due to the interaction between the layers, in agreement to the analo-
gous effect proved for the singularly perturbed Ginzburg–Landau equa-
tion. The second one is a constant, positive drift, which is linear in the
small magnetic field h. It coincides with the first order expansion of the
velocity for the traveling wave solutions to (1.1), see Eq. (2.8) in the next
section. Since the motion is very slow (for large t), following ref. 15 we
refer to Wa as a slow motion manifold. The velocity field has a zero at
(2a)−1 log[K(2mbh)−1] which gives, at the lowest order, (one half of ) the
length of the critical droplet.

Our approach is based on the geometric method used by Fusco and
Hale, (15) and by Carr and Pego, (5, 6) for the singularly perturbed Ginzburg–
Landau equation (see also the more recent paper by Eckmann and
Rougemont (14)). By restricting our analysis to the space of symmetric func-
tions we first construct an ‘‘approximately invariant’’ manifold M of quasi-
stationary states. The motion near M is described in terms of coordinates
along and transversal to M (the Fermi coordinates). This manifold con-
tains the essential dynamics: due to a strong transverse stability, the solu-
tions near M are squeezed into a thin channel which contains M and where
the layer motion is described with high accuracy by (1.4). We next prove
that there exists an unique stationary solution to Eq. (1.1) near M, which is
then identified with the critical droplet q and it turns out to be strictly con-
tained in the thin channel. The slow motion manifold Wa is thus defined by
that part of W inside the channel.
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In the next section we state the main definitions and results and we
give an outline of the paper.

2. DEFINITIONS AND RESULTS

We first state the assumptions on the interaction J appearing in (1.1).
The function J ¥ C3(R) is symmetric, nonnegative, and with integral equal
to one. Moreover sup{x ¥ R : J(x) > 0}=1 and JŒ(x) < 0 for x ¥ (0, 1).

In the whole paper we consider the evolution defined by (1.1) as an
equation in the space L.(R; [− 1, 1]), which we rewrite as:

dm
dt

=f(m), f(m) q − m+tanh{b[J f m+h]}. (2.1)

We observe that the Cauchy problem has a unique solution in L.(R) and
the set L.(R; [− 1, 1]) is invariant for the dynamics. Analogously there
exists a unique solution of the Cauchy problem in C0(R), the space of con-
tinuous and bounded functions on R, and the set C(R, [− 1, 1]) is left
invariant. We denote by St(m) the flow solution with initial datum m, so
that St defines a semi-group on L.(R; [− 1, 1]) for which C(R, [− 1, 1]) is
an invariant (closed) subspace. We finally notice that, since J is a symme-
tric function, the space C sym(R, [− 1, 1]) of symmetric, continuous func-
tions is an invariant set. In the sequel we will often need to study the
dependence of St(m) on the initial datum m. A first estimate is:

||St(m+u) − St(m)||. [ ek1t ||u||., (2.2)

where k1 > 0 is the Lipschitz coefficient of f. For a more refined bound, let
Lm be the linear operator defined by

Lmu=−u+pmJ f u, pm q
b

cosh2{bJ f m}
. (2.3)

Then Lm+h is the derivative Df|m of f(m) at m, so that:

f(m+u) − f(m) − Lm+hu

=b2(J f u)2 F
1

0
ds(1 − s) tanhœ{b[J f (m+su)+h]}, (2.4)

from which it follows that there exists k2 > 0 such that:

||f(m+u) − f(m) − Lm+hu||. [ k2 ||u||2
.. (2.5)
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Stationary Solutions (Refs. 1, 3, 4, 8, 9, 10, 12, 13, 22). Given
b > 1, there exists a unique (modulo translations) solution m̄(x) of (1.3),
which we call the instanton. It is a C., strictly increasing, antisymmetric
function. Moreover, letting a > 0 be such that:

b(1 − m2
b) F dz J(z) e−az=1, (2.6)

there are a > 0, a0 > a, and c > 0 so that, for all x \ 0,

|m̄(x) − (mb − ae−ax)|+|m̄Œ(x) − aae−ax|+|m̄œ(x)+a2ae−ax| [ ce−a0x, (2.7)

where m̄Œ and m̄œ are respectively the first and second derivatives of m̄.
For small h > 0, the existence of traveling waves solutions to (1.1),

connecting the stable and metastable phases m±
b, h, can be obtained by using

a perturbative argument around the instanton. These are solutions of the
form m̃h(x − v(h) t), where m̃h(x) is a strictly increasing function of x with
asymptotes m±

b, h at ± . and ||m̃h − m̄||.=O(h). The velocity of the front
v(h) is a negative, strictly decreasing function of h, such that:

lim
h Q 0+

v(h)
h

=−2mb m, m q 5F dy
m̄Œ(y)2

b(1 − m̄(y)2)
6−1

. (2.8)

On a physical background, m is the linear transport coefficient which
represents the mobility of an interface separating the stable phases, see,
e.g., refs. 2 and 23 for details. We refer to ref. 8 and reference therein, for
stability and other properties of fronts.

In ref. 10 it is proved the existence, for h > 0 small, of the critical
droplet in a neighborhood of the symmetric function m̄t(x) q m̄(t − |x|);
the result is summarized in the following theorem.

Theorem 2.1. Given b > 1, there is h0 > 0 and, for any h ¥ (0, h0],
there is q ¥ C sym(R; [− 1, 1]) which solves (1.2). Moreover there is tg=
tg(h) such that:

lim
h a 0

||q − m̄tg ||.=0 and lim
h a 0

e2atg(h)h=(2mb)−1 K, (2.9)

where

K q
a

b(1 − m2
b)

F dx
eaxm̄Œ(x)(m2

b − m̄2(x))
1 − m̄2(x)

, (2.10)

with a defined by (2.6) and a as in (2.7).
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The Quasi-Invariant Manifold. We are interested in the behavior
of solutions which consist of two well separated layers, and from (2.9) we
expect that the interesting part of the relaxation process is caught by
restricting our analysis to patterns with layers at a distance no too larger
than (2a)−1 |log h|. In fact layers far apart from each other interact too
weakly and the effect of the magnetic field predominates (one could prove
they simply go away with an almost constant velocity, each one eventually
approaching a traveling wave). With this in mind, for any a > 1, h < e−2aa,
and o > 0, we introduce the interval:

Ca, o q {t: a < t < (2a)−1 |log h|+o}. (2.11)

Observe that:

h < e2aoe−2at
-t ¥ Ca, o. (2.12)

Theorem 2.2. Given b > 1, there is a0 > 1 such that, for any
h < e−2aa0, there exists a C1-map t W nt ¥ C sym(R; [− 1, 1]), t > a0, with the
following properties. For some d0 > 0 and any o > 0, there is c0=c0(o) > 0
such that, for any t ¥ Ca0, o,

||nt(x) − m̄t(x)||. [ c0e−at, (2.13)

||“tnt(x) − m̄ −

t(x)||. [ c0e−at, (2.14)

||f(nt) − V(t) “tnt ||. [ c0e−(2a+d0) t, (2.15)

with

V(t) q − mKe−2at+2mb mh (2.16)

and a, m, and K as in (2.6), (2.8), and (2.10) respectively.

This theorem will be proved in Section 8 where the function nt is
explicitly given in Definition 8.2. For any a \ a0 and o > 0 we refer to
Ma, o q {nt: t ¥ Ca, o} as the quasi-invariant manifold: by (2.15), f(nt),
nt ¥ Ma, o, is approximately tangent to Ma, o and very small.

Theorem 2.2 and Proposition 2.3 below are consequences of the spec-
tral analysis given in ref. 9, details are given in Section 8.

Proposition 2.3. Let nt, t ¥ Ca0, o, be as in Theorem 2.2 and, recall-
ing (2.3), set Lt q Lnt+h, pt q pnt+h. For any o > 0 there are a1 \ a0, c1 > 1,
and w1 > 0 such that, for any h < e−2aa1 and t ¥ Ca1, o, the following holds.
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There exist an eigenvalue lt > 0 and strictly positive right and left eigen-
functions vt, vg

t ¥ C sym
0 (R) so that:

vg
t =ptvt, ||eLtt||. [ c1eltt

-t \ 0. (2.17)

Furthermore letting aŒ=aŒ(t) q a − c1e−2at we have:

c−1
1 e−2at [ lt [ c1e−2at vt(x) [ c1e−aŒ |t − x|

-x ¥ R+. (2.18)

Moreover, recalling (2.8) and setting m̃t(x) q `m m̄(t − x),

|vt(x) − m̃ −

t(x)| [ c1e−2at+a |t − x|t4 for |t − x| [ t/2. (2.19)

Assume vt and vg
t are normalized so that:

F
.

0
dx

vt(x)2

pt(x)
— F

.

0
dx vg

t (x) vt(x)=1 (2.20)

and define the linear functional pt on L sym
. (R) as

pt(k) q F
.

0
dx vg

t (x) k(x). (2.21)

Then, for any k ¥ L sym
. (R) and for any w ¥ L sym

. (R) such that pt(w)=0,

|pt(k)| [ c1 ||k||., ||eLttw||. [ c1e−w1t ||w||. -t \ 0. (2.22)

We will often use that, as a consequence of the above proposition, for
some constant ĉ1=ĉ1(o), and for all w such that pt(w)=0,

||L−1
t ||. [ ĉ1l−1

t , ||L−1
t w||. [

c1

w1
||w||.. (2.23)

Fermi Coordinates. We introduce tubular coordinates in a neigh-
borhood of Ma, o in the following way. The estimates (2.14) and (2.19)
suggest that for t large enough the vectors vt and “tnt are almost parallel.
Therefore we can use the projection (2.21) to define a transverse direction
to Ma, o. To this end we shall need the following lemma, proved in Section 8.

Lemma 2.4. There are d1 > 0 and a1 > a and, for any o > 0, there
are a2 \ a1 and c2 > 0 such that, for any h < e−2aa2 and t ¥ Ca2, o, the follow-
ing holds.
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|“tvt(x) − m̃'

t (x)| [ c2e−att4 for |t − x| [ t/2, (2.24)

|“tvt(x)| [ c2t2vt(x) -x ¥ R, :dlt

dt
: [ c2e−a1t. (2.25)

Moreover, for any k ¥ L sym
. (R),

|“tpt(k)| [ c2 ||k||., “tpt(k) q F
.

0
dx “tvg

t (x) k(x). (2.26)

Finally:

||“tnt − pt(“tnt) vt ||. [ c2e−d1t, (2.27)

|pt(“tnt)−1 − `m| [ c2e−d1t, (2.28)

|“tpt(“tnt)| [ c2e−d1t. (2.29)

Given e > 0, o > 0, a \ a1, and h < e−2aa, let

Ba, o, e q {m ¥ L sym
. (R) : inf

t ¥ Ca, o

||m − nt ||. < e}. (2.30)

A standard application of the Implicit Function Theorem implies the
following result.

Theorem 2.5. For any o > 0 let a2 be as in Lemma 2.4. Then there
are e0 > 0, c̄ \ 1, ō > o, and a3 > ā \ a2 such that, for any h < e−2aa3, there
exists a C1-map X: Ba3, o, e0

Q Cā, ō such that, for t=X(m),

pt(m − nt)=0, ||m − nt ||. [ c̄ inf{||m − nz ||.: z ¥ Ca3, o}. (2.31)

Moreover, if t0 ¥ Ca3, o and ||m − nt0
||. < e0, then:

|t − t0 | [ c̄ ||m − nt0
||.. (2.32)

The proof, which is sketched at the end of Section 8, is a standard
application of the Contraction Mapping Principle, see also the analogous
result in ref. 5. As a corollary we get the existence of tubular coordinates.
That is the following holds. Let

Saa, o, e q {(t, j) ¥ Ca, o × L sym
. (R) : pt(j)=0, ||j||. < e}. (2.33)

For (t, j) ¥ Saa, o, e define M(t, j) q nt+j and Sa, o, e q M(Saa, o, e). Then for
any h < e−2aa3, the map M: Saa3, o, e0

QSa3, o, e0
is differentiable, one to one,
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and X(M(t, j))=t. Moreover Sa3, o, e0
is open in L sym

. (R). We thus have
existence of tubular coordinates in a neighborhood of the manifold Ma, o

whose size is not vanishing as h a 0.

Equations of Motion. Consider a solution to (2.1), St(m), t ¥ [0, T],
T > 0, which lies in the tubular neighborhood Sa3, o, e0

with a3 and e0 as
above. Then we can decompose St(m)=nt(t)+j(t). By differentiating the
identity pt(j)=0, from (2.1) we obtain the equations of motion in the
Fermi coordinates (t, j):

[pt(“tnt) − “tpt(j)] ṫ=pt(f(nt+j)), (2.34)

j̇=f(nt+j) − “tnt ṫ, (2.35)

where (ṫ, j̇) denotes the time derivative of (t, j). Observe that, from
Lemma 2.4, by choosing e small enough (depending on o), the coefficient
of ṫ in (2.34) is nonzero for any (t, j) in the tubular neighborhood Sa3, o, e.

Given o > 0 and a > a3 such that e−3aa/2 < e0, we introduce the thin
channels Za, o, Q, Q \ 1, defined by:

Za, o, Q q {m=nt+j ¥ Sa3, o, e : t ¥ Ca, o, ||j||. [ Q−1e−3at/2}. (2.36)

Then:

Theorem 2.6. For any o > 0 there are e1 ¥ (0, e0], a4 \ a3, Q \ 1,
and n > 0, such that, for any h < e−2aa4, the following holds. If m ¥ Sa4, o, e1

then, as long as St(m)=nt(t)+j(t) ¥ Sa4, o, e0
, one has:

||j(t)||. [ e−3at(t)/2+(Q ||j(0)||. − e−3at(0)/2) e−nt. (2.37)

We may assume e1 so small and a4 so large that (1+Q) e1 < e0 and
e−3aa4/2 < e1. By (2.37) we thus see that the tube Sa4, o, e1

is exponentially
attracted toward the channel Za4, o, 1. Moreover, for m ¥ Za, o, Q there are
only two possibilities: either St(m) stays forever in Za, o, 1, or there is a finite
time tg for which t(tg) belongs to the boundary of Ca4, o. The dynamics in
the channel Za4, o, 1 is essentially reduced to the motion of the coordinate
t(t), for which we have an explicit formula:

Theorem 2.7. For any o > 0 there is dg > 0 such that, for any a > a3

sufficiently large, as long as St(m)=nt(t)+j(t) ¥ Za, o, 1, one has (recall the
definition (2.16)):

ṫ=V(t)+O(e−(2a+dg) t). (2.38)

Theorems 2.6 and 2.7 will be proved in Section 3.
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The Critical Droplet. Our next result, proved in Section 4, concerns
the existence and uniqueness of the critical droplet in a neighborhood
of Ma, o.

Theorem 2.8. There is o0 such that the following holds. For any
o \ o0 there are e2 ¥ (0, e0], a5 \ a3, and h0 < e−2aa5 such that, for any
h ¥ (0, h0], the equation f(m)=0 in Sa5, o, e2

has a unique solution m=
nt̄+j̄. Moreover:

lim
h a 0

e2at̄h=(2mb)−1 K, lim
h a 0

e2at̄ ||j̄||.=0, (2.39)

with K as in (2.10).

From (2.39), (2.13), and (2.9) this solution to f(m)=0 has to coincide
with the critical droplet of Theorem 2.1, i.e., q=nt̄+j̄.

We have a detailed information on the spatial structure of the critical
droplet, which is the content of the following proposition, proved in
Section 5.

Proposition 2.9. Given b > 1, there is hg ¥ (0, h0] (h0 as in
Theorem 2.1) such that for any h ¥ (0, hg] the bump q(x) is a strictly
decreasing function on R+ (actually qŒ(x) < 0 for all x > 0). Moreover,
letting c > 0 be such that

b[1 − (m−
b, h)2] F dz J(z) e−cz=1, (2.40)

and tq be the (unique) positive zero of q(x), there are A > 0, d > 0, and
C > 0 so that, for all x \ tq,

|q(x) − (m−
b, h+Ae−c(x − tq))|+|qŒ(x)+cAe−c(x − tq)|+|qœ(x) − c2Ae−c(x − tq)|

[ Ce−(c+d)(x − tq). (2.41)

Finally, as h a 0, A, d, and C remain strictly positive and bounded, while
tq Q+..

The Invariant Manifold. The behavior of the dynamics around q
follows from the spectral properties of the linear operator L q Lq+h. Since q
satisfies (1.2) for any k ¥ L sym

. (R),

Lk=−k+pJ f k, p(x) q b[1 − q(x)2]. (2.42)
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Given z ¥ R, we introduce the normed spaces Xz q {w: R Q R mea-
surable and symmetric : ||w||z < .} where

||w||z q sup
x ¥ R+

ezx |w(x)|. (2.43)

The following proposition follows from the results proved in refs. 9 and 10
and for the reader convenience we give detailed references on where the
proofs can be found in Section 8.

Proposition 2.10. Given b > 1 let hg be as in Proposition 2.9. Then
there are constants C0 > 1 and C1 > 0 such that for any h ¥ (0, hg] the
following holds. There is an eigenvalue l > 0 and strictly positive right and
left eigenfunctions v, vg ¥ C sym

0 (R) so that vg(x)=p(x) v(x) for all x ¥ R
and

h
C0

[ l [ C0h. (2.44)

Furthermore there is a unique cv > c > 0, (c as in (2.40)) such that:

b(1 − (m−
b, h)2) F dz J(z) e−cv z=1+l, (2.45)

and there is Mv > 0 for which

lim
x Q+.

ecv xv(x)=Mv. (2.46)

Moreover, for any z [ cv and t \ 0,

||eLtw||z [ C1elt ||w||z -w ¥ Xz. (2.47)

Assume v and vg are normalized as in (2.20) (with pt replaced by p) and
define the linear functional p on Xz, z < cv, as in (2.21). Then there is w > 0
so that, for any w ¥ L sym

. (R) such that p(w)=0 and t \ 0,

||eLtw||. [ C1e−wt ||w||.,
1

C0
[ w [ C0. (2.48)

Finally, for tg as in (2.9),

lim
h a 0

sup
x [ 0

|v(x) − `m m̄Œ(x+tg)|=0. (2.49)
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From the above spectral estimates it follows the existence of two
distinct, one dimensional manifolds W± … C sym(R; [− 1, 1]). We give the
precise statement in the next theorem, proved in Section 6.

Theorem 2.11. Given b > 1 let hg be as in Proposition 2.9. Then,
for any h ¥ (0, hg], there are two distinct, one dimensional manifolds
W± … C sym(R; [− 1, 1]), such that:

W±={m±
s : s ¥ R}, St(m±

s )=m±
s+t, -s ¥ R, -t \ 0, (2.50)

lim
s Q − .

||m±
s − q||.=0. (2.51)

Moreover, for m as in (2.8),

lim
s Q − .

e−ls >dm±
s

ds
+ lels 1

`m
v>

.

=0. (2.52)

Finally, for any s ¥ R, the (symmetric) functions m±
s are nonincreasing on

R+ and satisfy:

m−
b, h [ m−

s (x) [ q(x) [ m+
s (x) [ m+

b, h -x ¥ R. (2.53)

Thus the one dimensional manifolds W± originates at s=−. from q
and are time invariant. Each one of them is therefore described by a single
orbit of St with time going from − . to +.. The two orbits are denoted
by m±

s and the parameter s is identified with time. Of course the origin of
time is arbitrary and this can be exploited to fix up the constants in such a
way that (2.52) holds, we refer to Section 6 for details on this point.

By integrating (2.52) from − . to s we get m±
s % q ± elsv/`m. Then,

by (2.9) and (2.49), m±
s (x) % m̄(x+tg ± els) for h small and x [ 0. By

symmetry the result extends to x \ 0. Thus the points in a neighborhood of
q that are in W+ are ‘‘droplets longer’’ than q while those in W− are shorter.
Their length changes at the exponential rate l, which is therefore the
Lyapunov exponent at q, with W± the corresponding unstable manifolds.
Since l % h, for h small, there is a dormant instability, in the sense that for
small h (which is the case of interest in metastability) even though ultimately
unstable, the bump q seems in fact stable for very long times (of order h−1).

By (2.39) the critical droplet q belongs to the interior of the channel
Za4, o, Q, for o large and h small enough. Then, according to Theorem 2.6,
a large part Wa of the invariant manifold W is contained in Za4, o, 1: it thus
consists of droplets with two well-separated transition layers whose loca-
tions evolve according to Eq. (2.38).
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Our last result concerns the global structure of the invariant manifold W.
More precisely we show that the sub-critical and super-critical droplets will
eventually go to the metastable and stable phase respectively: this is the
content of the next theorem proved in Section 7.

Theorem 2.12. Given b > 1 there is h† ¥ (0, hg] (hg as in Proposi-
tion 2.9) such that, for any h ¥ (0, h†],

lim
s Q+.

||m−
s − m−

b, h ||.=0, (2.54)

lim
s Q+.

m+
s (x)=m+

b, h -x ¥ R. (2.55)

A Notation Warning. In Sections 3, 4, and 8 we shall denote by
C=C(o) a generic positive function of o whose numerical value may
change from line to line.

3. LOCAL ATTRACTIVENESS

We start with a preliminary lemma.

Lemma 3.1. For any o > 0 let a3 and e0 be as in Theorem 2.5. Then,
there exists G=G(o) such that, for any h < e−2aa3, N > 0, and m=nt+j

¥ Sa3, o, e0
, one has:

||St(m) − nt ||. [ (c1e−w1t+N ||j||.) ||j||.+Ne−2at
-t < Tm, N, (3.1)

with c1 and w1 as in Proposition 2.3 and

Tm, N q min 3e2at;
N

G[1+N2(e−2at+||j||2
.)]

4 . (3.2)

Proof. Recalling that Lt q Lnt+h, the function kt q St(m) − nt,
k0=j, solves

kt=eLttj+F
t

0
ds eLt(t − s)[f(nt+ks) − Ltks].

By (2.17) and (2.5) we then get:

||kt − eLttj||. [ c1 F
t

0
ds elt(t − s)(||f(nt)||.+k2 ||ks ||

2
.).
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By (2.22), since pt(j)=0, ||ks ||. [ c1 ||j||.+||ks − eLtsj||.. Moreover, by
(2.12), (2.15), and (2.16), ||f(nt)||. [ Ce−2at. Finally, by (2.18), if t [ e2at

then ltt [ c1. We conclude that there exists G=G(o) > 0 such that:

||kt − eLttj||. [ G F
t

0
ds(e−2at+||j||2

.+||ks − eLttj||2
.) -t [ e2at. (3.3)

Given N > 0, fix y < Tm, N and let T [ y be the first time when the inequality

||kt − eLttj||. [ N(e−2at+||j||2
.) (3.4)

becomes an equality. Then, by (3.3),

N(e−2at+||j||2
.) [ N(e−2at+||j||2

.)
y

Tm, N
< N(e−2at+||j||2

.).

We have thus reached a contradiction and hence (3.4) is valid for all t [ y.
By (2.22) and (3.4) the inequality in (3.1) holds for any t [ y. The lemma is
thus proved. L

Proof of Theorem 2.6. We fix the parameter N of Lemma 3.1 such
that

4c̄c1e3ac̄e0/2e−w1TN=1, TN q
N
2G

, (3.5)

with c1, w1 as in Proposition 2.3, c̄, e0 as in Theorem 2.5, and G as in
Lemma 3.1. We next define:

Q q 1
2 (1+ew1TN)=1

2+2c̄c1e3ac̄e0/2, b q 1
2 e−3ac̄e0/2. (3.6)

(note that Q \ 1 and b < 1/2). We finally choose a4 > a3 large enough and
e1 ¥ (0, e0] small enough that:

N2(e−2aa4+e2
1) < 1, Ne−2aa4 < 2G, c1e1+N(e2

1+e−2aa4) < e0, (3.7)

c̄Ne1 < b/2, c̄Ne−aa4/2 < b/Q, e−3aa4/2 < e1/2. (3.8)

Let now m=nt+j ¥ Sa4, o, e1
. By the first and the second inequality in (3.7)

we have Tm, N > TN for all m ¥ Sa4, o, e1
with Tm, N as in (3.2). By (3.1) and the

third inequality in (3.7) we thus get ||St(m) − nt ||. < e0 for all t ¥ [0, TN].
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Then, by Theorem 2.5, the function t(t)=X(St(m)) is well defined for all
t ¥ [0, TN] and

|t(t) − t| [ c̄ ||St(m) − nt ||. [ c̄e0, (3.9)

||j(t)||. [ c̄ ||St(m) − nt ||.

[ c̄(c1e−w1t+Ne1) ||j||.+c̄Ne−aa4/2e−3at/2, (3.10)

where j(t) q St(m) − nt(t) and we again used (3.1) for the last bound in
(3.10). By (3.5), (3.8), and (3.10) it easily follows that:

||j(t)||. [
b
2

(1+ew1(TN − t)) ||j||.+
b
Q

e−3at/2.

Moreover, by (3.9), 2be−3at/2 [ e−3at(t)/2 for all t ¥ [0, TN]. Then, recalling
the definition (3.6) of Q \ 1, we conclude that:

||j(t)||. [ b(Q ||j||. − e−3at/2)+e−3at(t)/2
-t ¥ [0, TN], (3.11)

||j(TN)||. [
b
Q

(Q ||j||. − e−3at/2)+
1
Q

e−3at(TN)/2. (3.12)

We have thus proved that if m ¥ Sa4, o, e1
then St(m) ¥ Ba4, o, e0

for all
t ¥ [0, TN] and j(t)=St(m) − nt(t) satisfies the bounds (3.11) and (3.12).
It follows that St(m) may leave Sa4, o, e0

at a given time tg ¥ [0, TN] only
because t(tg) belongs to the boundary of Ca4, o. If this is not the case, since
the third inequality in (3.8) implies ||j(TN)||. < e1, then STN

(m) ¥ Sa4, o, e1
and

we can repeat the same analysis for the solution in the interval [TN, 2TN].
Let n be the largest integer such that St(m) leaves Sa4, o, e0

at tg \ tn q nTN,
setting n=+. if St(m) ¥ Sa4, o, e0

forever. Then, for any integer k [ n we
iterate (3.12) getting

||j(tk)||. [
bk

Q
(Q ||j(0)||. − e−3at(0)/2)+

1
Q

e−3at(tk)/2, tk q kTN,

from which, using (3.11) with j=j(tk), we finally obtain:

||j(t)||. [ bk+1(Q ||j(0)||. − e−3at(0)/2)+e−3at(t)/2
-t ¥ [tk, tk+1],

which implies (2.37) with n=−(log b)/TN. The theorem is thus proved. L
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Proof of Theorem 2.7. Recalling (2.4),

f(nt+j)=f(nt)+Ltj+Rt[j], (3.13)

Rt[j]=b2(J f j)2 F
1

0
ds(1 − s) tanhœ{b[J f (nt+sj)+h]}, (3.14)

so that, since pt(Ltj)=ltpt(j)=0, Eq. (2.34) becomes:

ṫ=
pt(f(nt))+pt(Rt[j])

pt(“tnt) − “tpt(j)
.

By (2.5), (2.15), (2.22), (2.26), and the definition of Za, o, 1, (2.38) follows for
a suitable dg > 0. L

4. THE CRITICAL DROPLET

In this section we prove Theorem 2.8. Recalling (2.34) and (2.35) we
have that m=nt+j ¥ Sa3, o, e0

is a solution to f(m)=0 iff (t, j) solve:

f(nt+j)=0, pt(f(nt+j))=0, pt(j)=0.

We rewrite the above equations as follows. For t ¥ Ca3, o we define the
projection Tt acting on L sym

. (R) by:

Ttk=k − pt(k) vt. (4.1)

Observe that by (2.18) and (2.22) there is C so that:

||Ttk||. [ C ||k||. -k ¥ L sym
. (R). (4.2)

Then, using the expansion (3.13) and the fact that pt(Ltj)=0 we get that
f(nt+j)=0 iff (t, j) solve:

Ltj+Tt(f(nt)+Rt[j])=0, (4.3)

pt(f(nt)+Rt[j])=0. (4.4)

We now proceed in the following way: we first show in Lemma 4.1
later, that there exists a unique graph t W jt in a tubular neighborhood
Sa, o, e such that jt is solution to (4.3). Replacing j by jt in (4.4) the
problem reduces to study an equation in the real variable t.
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Lemma 4.1. For any o > 0 there are e2 ¥ (0, e0] and a6 \ a3 such
that, for any h < e−2aa6 and t ¥ Ca6, o, the map At: L sym

. (R) Q L sym
. (R)

defined by

At(j) q − L−1
t Tt(f(nt)+Rt[j]) (4.5)

is a contraction in Ye2
q {j ¥ L sym

. (R) : ||j||. [ e2}.

Proof. From (2.5) and (2.23) we have:

||Atj||. [
c1

w1
[||Tt f(nt)||.+k2 ||j||2

.].

We write Tt f(nt)=Tt(f(nt) − V(t) “tnt)+V(t) Tt “tnt. From (2.15)
and (4.2) it follows that: ||Tt(f(nt) − V(t) “tnt)||. [ Ce−(2a+d0) t. Since for
t ¥ Ca3, o and, if h < e−2aa3, then he−2at [ e2ao, from (2.27) we get: |V(t)| ×
||Tt “tnt ||. [ Ce−(2a+d1) t. By the above estimates we conclude that there is
d > 0 so that:

||Tt f(nt)||. [ Ce−(2a+d) t. (4.6)

Then, for any a \ a3, h < e−2aa, t ¥ Ca, o, and j ¥ Ye,

||At(j)||. [
c1

w1
[Ce−(2a+d) a+k2e2]. (4.7)

Moreover, recalling (3.14), there is k3 > 0 for which, if j1, j2 ¥ Ye, then:

||Rt[j1] − Rt[j2]||. [ k3e(1+e) ||j1 − j2 ||.

so that

||At(j1) − At(j2)||. [
c1k3

w1
e(1+e) ||j1 − j2 ||.. (4.8)

From (4.7) and (4.8) we conclude that, by choosing e2=2Cc1w−1
1 e−(2a+d) a6

and a6 \ a3 large enough, At is a contraction in Ye2
. L

Proposition 4.2. For any o > 0 there is a7 > a6 such that, for any
h < e−2aa7, the graph t Q jt is differentiable and

||jt ||. [ Ce−(2a+d2) t, ||“tjt ||. [ Ce−d2t (4.9)

with d2=min{d0, d1, 2a} (d0 and d1 as in Theorem 2.2 and Lemma 2.4
respectively).
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Proof. Since jt is the fixed point of the map (4.5), the bound for
||jt ||. follows immediately from (4.6) (with d2=d). Moreover, since the
r.h.s. of (4.5) is a continuous function of t and j, the continuity of t W jt

is also straightforward.
We next study the equation for “tjt which is obtained by differentiat-

ing (4.3) (for j=jt) w.r.t. t. We shall prove that for any o > 0 there is
a7 \ a6 such that it has a unique solution for any t ¥ Ca, o. By standard
arguments this solution defines the derivative “tjt.

Let Gt q − (f(nt)+Rt[jt]), so that jt solves Ltjt=TtGt. By dif-
ferentiating (recall (2.26)) we get:

Lt “tjt+“t ptJ f jt

=Tt “tGt − pt(Gt) Tt “tvt − [pt(Gt) pt(“tvt)+“tpt(Gt)] vt.

By substituting Gt=Ltjt+pt(Gt) vt in the term “tpt(Gt) we have:

Lt “tjt= − “t ptJ f jt+Tt “tGt − pt(Gt) Tt “tvt

− {pt(Gt)[pt(“tvt)+“tpt(vt)]+“tpt(Ltjt)} vt.

Observing now that, by (2.20), pt(“tvt)+“tpt(vt)=0 we get

Lt “tjt=Tt[“tGt − “t ptJ f jt − pt(Gt) “tvt)]+ltH(t) vt, (4.10)

with

H(t)= −
1
lt

[pt(“t ptJ f jt)+“tpt(Ltjt)]

= −
1
lt

F
.

0
dx 5“t pt

pt

vtJ f jt+1“tvt

pt

−
“t pt

p2
t

vt
2 Ltjt

6(x)

= −
1
lt

F
.

0
dx jt(x)1J f “tvt+

“t pt

p2
t

vt −
“tvt

pt

2(x). (4.11)

In the last line we used the definition of Lt and that, since “tvt, J, and jt

are symmetric functions, then:

F
.

0
dx “tvt(x) J f jt(x)=F

.

0
dx jt(x) J f “tvt(x).
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Now, by differentiating Ltvt=ltvt,

J f “tvt=
dlt

dt

vt

pt

+lt

“tvt

pt

−
“t pt

pt

J f vt+
“tvt

pt

,

so that

H(t)=−
1
lt

F
.

0
dx jt(x)1dlt

dt

vt

pt

+lt

“tvt

pt

−
“t pt

p2
t

Ltvt
2(x).

Using again Ltvt=ltvt and observing the first term on the r.h.s. is
proportional to pt(jt)=0, we finally obtain:

H(t)=−F
.

0
dx jt(x)1“tvt

pt

−
“t pt

p2
t

vt
2(x). (4.12)

Recalling now Lt=Df|nt
and (3.14), we have:

“tGt=−Lt “tnt+Kt+ZtJ f “tjt, (4.13)

where

Kt=−b3(J f jt)2 F
1

0
ds s(1 − s) tanh'−{b[J f (nt+sjt)+h]} J f “tnt,

(4.14)

Zt=−2b2J f jt F
1

0
ds(1 − s) tanhœ{b[J f (nt+sjt)+h]}

− b3(J f jt)2 F
1

0
ds s(1 − s) tanh'−{b[J f (nt+sjt)+h]}. (4.15)

Observing that TtLt “tnt=LtTt “tnt, from (4.10) and (4.13) we obtain
“tjt by solving the linear equation k=Utk+gt, where:

Utk q L−1
t TtZtJ f k,

gt q L−1
t Tt[Kt − “t ptJ f jt − pt(Gt) “tvt]+H(t) vt − Tt “tnt.

From (2.23) and (4.15) ||Ut ||. [ C ||jt ||., hence, by using the first bound in
(4.9), there is a7 \ a6 such that ||Ut ||. [ 1/2 for t ¥ Ca, o. Then for such
values of t the equation has a unique solution “tjt=(1 − Ut)−1 gt. The
continuity of t W “tjt follows from that of t W Ut and t W gt, which can
be easily proved.
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We are left with the second bound in (4.9). Since ||“tjt ||. [ 2 ||gt ||. we
have only to prove an analogous estimate for the known term gt. From
(2.22), (4.14), and (2.23),

||gt ||. [ C(||jt ||2
.+||jt ||.+|pt(Gt)|+|H(t)|+||“tnt − pt(“tnt) vt)||.),

where we have used ||“t pt ||. [ const ||“tnt ||. and (2.14), and ||“tvt ||. [ const,
which follows by (2.18) and (2.25). Recalling Gt=−(f(nt)+Rt[jt]),
(2.5), (2.15), (2.16), and (2.22) we have that |pt(Gt)| [ C(e−2at+||jt ||.).
From (2.24), (2.25), and ||“t pt ||. [ const, we also have that |H(t)| [

C ||jt ||.. Then, from the first bound in (4.9), (2.27), and the previous esti-
mates, we conclude that ||gt ||. [ Ce−min{2a; d1} t. The proposition is thus
proved. L

To conclude the proof of Theorem 2.8 we are left with the equation
P(t)=0, where P(t)=pt(f(nt)+Rt[jt]). We first observe that from
(2.15), (2.16), Lemma 2.4, and Proposition 4.2, for any o > 0 there are
a8 \ a7 such that |P(t) − V(t)| [ Ce−(2a+d2) t for any h < e−2aa8 and t ¥ Ca8, o

(recall d2=min{d0; d1; 2a}). We then have:

P(a) [ − (mK − Ce−d2a) e−2aa+2mb mh,

P((2a)−1 |log h|+o) \ [m(2mb − Ke−2ao) − Ce−(2a+d2) oh (2a) − 1 d2] h.

Let o0 > 0 be such that 2mb − Ke−2ao0 \ mb and, for any o \ o0, let a9 so
large that mK − Ce−d2a9 \ mK/2. Then, for any o \ o0 and a \ a9 there is
ho, a such that, for any h < ho, a, we have P(a) < 0 and P((2a)−1 |log h|+o)
> 0. Since the function t W P(t) is easily seen to be continuous (actually
differentiable) it follows it has at least one zero in Ca, o for any h small
enough. In order to prove uniqueness it is sufficient to show the function
is strictly monotone. Recalling Gt q − (f(nt)+Rt[jt]), using (4.13), and
vg

t Lt=ltvg
t we have:

PŒ(t)=ltpt(“tnt) − pt(Kt+ZtJ f “tjt)+“tpt(f(nt))+“tpt(Rt[jt]).

From (2.22), (2.26), (4.14), (4.15), and Proposition 4.2, it follows that, for
all h < e−2aa9 and t ¥ Ca9, o,

|pt(Kt+ZtJ f “tjt)|+|“tpt(Rt[jt])| [ Ce−2(a+d2) t.

On the other hand, from (2.15), (2.16), and using (2.29), |“tpt(f(nt))| [

Ce−(2a+d2) t. From (2.18) and (2.28) we conclude that

PŒ(t) \
e−2at

c1 `m
(1 − Ce−d2t).
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Then, for any o \ o0, there is a5 \ a9 such that, for each h [ ho, a5
, the

equation P(t)=0 has a unique solution on Ca5, o. Theorem 2.8 thus follows
with t̄ equal to such a solution, j̄=jt̄, and h0=ho, a5

. We have only to
check the limits (2.39). By our choice of a9 and since a5 \ a9,

P(t) [ −
mK
2

e−2at+2mb mh -t ¥ Ca5, o, -h [ ho, a5
,

which implies t̄ Q+. as h a 0. On the other hand, since |P(t) − V(t)|
[ Ce−(2a+d2) t,

|e2at̄V(t̄)|=|2mb mhe2at̄ − mK| [ Ce−d2 t̄.

Letting h a 0 in the above inequality we thus obtain the first limit in (2.39);
the second one then follows by the first bound in (4.9). L

5. SPATIAL PROPERTIES OF THE BUMP

In this section we prove Proposition 2.9. The critical droplet is
uniquely determined by its restriction to the semi-space R+, which solves

q(x)=tanh{b[(J+q)(x)+h]}, x ¥ R+, (5.1)

where, for any u ¥ C(R+),

(J±u)(x) q F
+.

0
dy J±(x, y) u(y), J±(x, y) q J(x − y) ± J(x+y).

(5.2)

Observe that, since J is nonincreasing on R+, J±(x, y) \ 0 for all x, y \ 0;
moreover, since sup{x ¥ R : J(x) > 0}=1, if x > 1 then J±(x, y)=J(x − y)
for all y \ 0. Let m̄tg be as in Theorem 2.1. Since b(1 − m2

b) < 1, from (1.3)
and (2.9) there are h ¥ (0, 1), h1 ¥ (0, h0], and a positive integer a

g ¥

(1, tg − 1) such that:

b(1 − m̄tg(x)2) [ h - |x − tg| \ a
g − 1, -h ¥ (0, h1]. (5.3)

On the other hand, recalling the definition (2.42), (2.9) implies

lim
h a 0

||p − b(1 − m̄2
tg)||.=0. (5.4)
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From (5.3) and (5.4) it follows there are d ¥ (h, 1) and h2 ¥ (0, h1] such
that, for a

g ¥ (1, tg − 1) as before,

p(x) [ d - |x − tg| \ a
g − 1, -h ¥ (0, h2]. (5.5)

Lemma 5.1. Let h ¥ (0, h2], h2 and a
g be as in (5.5). Then, for each

k ¥ [0, tg − a
g] and s \ tg+a

g, we have:

qŒ(x)=F
k+1

k
dy Hk(x, y) qŒ(y) -x ¥ [0, k), (5.6)

qŒ(x)=F
s

s − 1
dy Ks(x, y) qŒ(y) -x ¥ (s, +.), (5.7)

where Hk(x, y), x ¥ (0, k), and Ks(x, y), x > s, are nonnegative continuous
functions of y, strictly positive for some y ¥ [k, k+1], y ¥ [s − 1, s],
respectively.

Proof. We start with the proof of (5.6). We differentiate (5.1) at
x ¥ [0, k), obtaining (recall (5.2))

qŒ(x)=p(x) F
k

0
dy J− (x, y) qŒ(y)+p(x) F

k+1

k
dy J− (x, y) qŒ(y).

After N iteration we get

qŒ(x)=F
k+1

k
dy H (N)

k (x, y) qŒ(y)+F
k

0
dy D (N)

k (x, y) qŒ(y), (5.8)

where

H (N)
k (x, y) q C

N

n=1
D (n)

k (x, y), D (1)
k (x, y) q p(x) J− (x, y),

and, for n > 1, setting x=y0 and y=yn,

D (n)
k (y0, yn)=F

k

0
dy1 · · · F

k

0
dyn − 1 D

n

i=1
p(yi − 1) J− (yi − 1, yi).

The assumptions on J imply

0 [ J− (x, y) [ J(x − y), J− (0, y) — 0 -x, y ¥ R+. (5.9)

Slow Motion and Metastability for a Nonlocal Equation 731



From (5.5), (5.9) and recalling p(x)=b(1 − q(x)2), we get

0 [ D (n)
k (y0, yn) [ dn − 1Jn(y0, yn). (5.10)

Since Jn(y0, yn) is a probability density and ||qŒ||. < ., the second integral
in the r.h.s. of (5.8) vanishes as N Q+. and we obtain (5.6) with

Hk(x, y)= C
.

n=1
D (n)

k (x, y), (5.11)

and the series converges exponentially fast. Clearly Hk(x, · ) is nonnegative
and continuous. Moreover it is strictly positive for some y ¥ [k, k+1]
because, for all x > 0, sup{|y − x| ¥ R+ : J− (x, y) > 0} > 0.

The case x > s can be treated in the same manner, getting

Ks(x, y)= C
.

n=1
R (n)

s (x, y), R (1)
s (x, y) q p(x) J(x − y), (5.12)

where, for n > 1, setting x=y0 and y=yn,

R (n)
s (y0, yn)=F

+.

s
dy1 · · · F

+.

s
dyn − 1 D

n

i=1
p(yi − 1) J(yi − 1 − yi). (5.13)

In (5.12) we used that J− (u, v)=J(u − v) for u > s > 1 and v \ 0. L

Proof of the Monotonicity Property. We first prove that there is
h3 ¥ (0, h2] such that

qŒ(x) < 0 - |x − tg| [ a
g, -h ¥ (0, h3]. (5.14)

To prove (5.14) we differentiate (5.1) for |x − tg| [ a
g. Recalling J+(x, y)=

J(x − y) when x+y > 1, we get,

qŒ(x)=p(x)(J f q)Œ (x)=p(x)(JŒ f (q − m̄tg))(x)+p(x)(J f m̄ −

tg)(x).
(5.15)

Since m̄tg is strictly decreasing on R+, from (2.9) we get (5.14).
From (5.14) and Lemma 5.1 it follows qŒ(x) < 0 for all x > 0 and

h ¥ (0, h3], thus getting the monotonicity property of the bump. L

We will prove Proposition 2.9 with hg=h3. We are thus left with the
proof of (2.41). We follow the same strategy used in Section 3 of ref. 9. In
fact large part of that strategy can be adapted to our context without
modification. We first need a weaker result.
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Lemma 5.2. There are g > 0 and c > 0 such that

|qŒ(x)| [ ce−g(x − tq)
-x ¥ R+, -h ¥ (0, hg], (5.16)

where tq=tq(h) is the (unique) positive zero of the bump.

Proof. By the definition (5.13), R (n)
s (x, y)=0 if x > n+s and y ¥

[s − 1, s], and it satisfies a bound analogous to (5.10). Then, from (5.7), for
any x > s \ tg+a

g, we have

|qŒ(x)| [ b ||qŒ||. C
n \ x − s

dn − 1 [ d−1b ||qŒ||.e−(x − s) |log d|. (5.17)

Let tq be the (unique) zero of q(x) in R+. By (2.9) m̄tg(tq)=m̄(tg − tq)
vanishes as h a 0, hence

lim
h a 0

[tq(h) − tg(h)]=0. (5.18)

In particular (5.18) implies there is a < . such that

tq+a \ tg+a
g

-h ¥ [0, hg]. (5.19)

and (5.16) follows from (5.17) with s=tq+a. L

From (5.7), we have, for each s \ a,

qŒ(x+tq)=F
s

s − 1
dy Gs(x, y) qŒ(y+tq), -h ¥ (0, hg], (5.20)

where, setting ptq
(x) q p(x+tq),

Gs(x, y) q C
.

n=1
F

+.

s
dy1 · · · F

+.

s
dyn − 1 D

n

i=1
ptq

(yi − 1) J(yi − 1 − yi). (5.21)

We observe that ptq
(x) is a strictly decreasing function of x for x > 0,

ptq
(x) > inf

x > 0
ptq

(x)=p.=b(1 − (m−
b, h)2) < 1 (5.22)

and, by Lemma 5.2, there is cŒ > 0 such that

ptq
(x) [ p.+cŒe−gx, -h ¥ [0, hg]. (5.23)
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In Theorem 3.1 of ref. 9 the asymptotics of m̄Œ(x) follows from an
analogous (to (5.20)) expression for m̄Œ(x), where ptq

(x) is replaced by
pm̄(x) q b(1 − m̄(x)2) in the definition of Gs(x, y). The proof does not
depend on the specific form of the function pm̄(x), but only on the mono-
tonicity property and the analogous of (5.22) and (5.23). Then a result as
Theorem 3.1 of ref. 9 holds in our case. We conclude that there exist M > 0
and d ¥ (0, c), c as in (2.40), such that

lim
x Q+.

ecxqŒ(x+tq)=−M, lim
x Q+.

edx(ecxqŒ(x+tq)+M)=0. (5.24)

As in ref. 9 the constant M is nonzero because of the monotonicity prop-
erty of qŒ(x). Moreover, since 0 < p. < 1 and (5.23) holds uniformly in h,
the constant M=M(h) appearing in (5.24) remains bounded away from 0
as h a 0.

Analogously we obtain (2.41) (with A=Mc−1) from (5.24) by arguing
exactly as in the proofs of Theorems 3.2 and 3.3 of ref. 9 where (2.7)
follows as a corollary of Theorem 3.1 of ref. 9. We omit the details. L

6. THE INVARIANT MANIFOLDW

In this section we prove Theorem 2.11, i.e., the existence of a one
dimensional, invariant, expanding manifold W in C sym(R; [− 1, 1]) con-
sisting of two branches that originate from the bump q.

For h ¥ (0, hg] (hg as in Proposition 2.9) let L, l, v be as in Proposi-
tion 2.10. We next derive some properties of the evolution St(q+u0) start-
ing from an initial datum q+u0 with u0 small. We set ut q St(q+u0) − q.
Since St(q)=q and f(q)=0 we have

dut

dt
=Lut+[f(q+ut) − f(q) − Lut], (6.1)

which implies

ut=eLtu0+F
t

0
ds eL(t − s)[f(q+us) − f(q) − Lus]. (6.2)

Then by (2.5) and (2.47) (with z=0)

||ut − eLtu0 ||. [ C2 F
t

0
ds el(t − s) ||us ||

2
., C2 q C1k2. (6.3)
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Lemma 6.1. There is N > 0 such that if u0 ¥ L.(R) satisfies

s(u0) q
1
l

log
1

N ||u0 ||.
> 0, (6.4)

then, for all t < s(u0),

||ut − eLtu0 ||. [ N(elt ||u0 ||.)2 (6.5)

and, with C1 as in (2.47),

||ut ||. [ (1+C1) elt ||u0 ||.. (6.6)

Proof. The lemma will follow with N q 4C2l−1. We prove (6.5) by
contradiction. Fix y < s(u0) and define ry q ely ||u0 ||.. Let T [ y be the first
time when the inequality (6.5) becomes an equality. Then, by (6.3) with
t=T,

N(elT ||u0 ||.)2 [ C2 F
T

0
ds el(T − s)[els ||u0 ||.+N(els ||u0 ||.)2]2

[ C2(1+Nry)2 l−1(elT ||u0 ||.)2 < N(elT ||u0 ||.)2, (6.7)

where in the last inequality we used Nry < 1. We have thus reached a con-
tradiction and (6.5) is proved for all t [ y. Hence, by (2.47),

||ut ||. [ C1elt ||u0 ||.+N(elt ||u0 ||.)2 [ (1+C1) elt ||u0 ||. (6.8)

for all t [ y, and Lemma 6.1 is proved. L

We use in the sequel the following notation. For v, N as in Proposi-
tion 2.10 and Lemma 6.1 we denote by r any positive number such that
Nr ||v||. < 1 and define

k± e q q ± ev, e ¥ [0, r], y(r, e) q
1
l

log
r

e
. (6.9)

We observe that ± ev, e ¥ [0, r] satisfy the hypothesis of Lemma 6.1 and
that y(r, e) < s( ± ev), s( · ) as in (6.4). Hence, for any t [ y(r, e),

||St(k± e) − (q ± eltev)||. [ N(elte ||v||.)2, (6.10)

||St(k± e) − q||. [ (1+C1) elte ||v||.. (6.11)
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Theorem 6.2. For any h ¥ (0, hg] (hg as in Proposition 2.9), there
are r > 0 and w±

s ¥ C sym
0 (R), s [ 0, such that, for any s [ 0,

lim
e a 0

||Sy(r, e)+s(k± e) − w±
s ||.=0. (6.12)

Moreover

lim
s Q − .

||w±
s − q||.=0; St(w±

s )=w±
s+t if s+t [ 0. (6.13)

A uniformity in s [ 0 of the limit (6.12) is proved in Proposition 6.6
later to which we refer for a precise statement.

Proof of Theorem 6.2. We will next prove that if r is small enough
then {Sy(r, e)(k± e): e ¥ (0, r]} is a Cauchy sequence as e a 0. Without loss
of generality we restrict to the case with the plus sign. Observing that
ke=q+ely(e, eŒ)eŒv for any 0 < eŒ < e, by (6.10),

||Sy(e, eŒ)(keŒ) − ke ||. [ N ||v||2
. e2. (6.14)

We thus need to compare St(ke) and St(m̃), t [ y(r, e), for all functions m̃
such that

||m̃ − ke ||. [ N ||v||2
. e2. (6.15)

Let

Dt q St(ke) − St(m̃). (6.16)

By (2.5) we have

dDt

dt
=LSt(ke)Dt+R(1)

t , ||R (1)
t ||. [ k2 ||Dt ||

2
.. (6.17)

Since ||Lm+uD − LmD||. [ cŒ ||u||. ||D||. with cŒ a suitable constant, by (6.11)
there is C3 so that

R (2)
t q LSt(ke)Dt − LDt, ||R (2)

t ||. [ C3 r ||Dt ||. -t [ y(r, e). (6.18)

Thus

Dt=eLtD0+F
t

0
ds eL(t − s)[R (2)

s +R(1)
s ]. (6.19)
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Then by (2.47) and the bounds in (6.17) and (6.18), for any t [ y(r, e),

||Dt ||. [ C1eltD0+C1 F
t

0
ds el(t − s)[C3 r ||Ds ||.+k2 ||Ds ||

2
.].

By iteration and recalling (6.3), for lg q l+C2C3 r, we have:

||Dt ||. [ C1elgtD0+C2 F
t

0
ds elg(t − s) ||Ds ||

2
.. (6.20)

Setting Wt q e−lgt ||Dt ||. and using (6.15), from (6.20) we get, for all
t [ y(r, e),

Wt [ C1N ||v||2
. e2+C2 F

t

0
ds W2

s , (6.21)

which implies:

Wt [ ce2 C
.

n=0
(ce2t)n, c q C1(1 K C2) N ||v||2

.. (6.22)

Since ey(r, e) Q 0 as e a 0, we can choose e1 ¥ (0, r] so that the series con-
verges and Wt [ 2ce2 for all e ¥ (0, e1] and t [ y(r, e). We choose r small
enough so that C2C3 r [ l/2, i.e., elgy(r, e) [ (r/e)3/2. Then, recalling (6.9)
and the definition of Wt we get, for C4 q 2cr3/2,

||Dt ||. [ C4 `e, -e ¥ (0, e1], -t [ y(r, e). (6.23)

By (6.14) and (6.23) we conclude that

||Sy(r, eŒ)(keŒ) − Sy(r, e)(ke)||. [ C4 `e if 0 < eŒ < e [ e1, (6.24)

which shows {Sy(r, e)(ke)} is a Cauchy sequence as e a 0 for all r small
enough. The same argument shows that also Sy(r, e)+s(k± e) is a Cauchy
sequence for each s [ 0. Then Sy(r, e)+s(k± e) converges in sup norm as
e a 0 to a function w±

s , hence (6.12). Moreover if t+s [ 0, t \ 0, then
St(Sy(r, e)+s(ke))=Sy(r, e)+s+t(ke). By (2.2) for each t \ 0, St(m) depends
continuously on m, thus St(Sy(r, e)+s(ke)) Q St(w±

s ) as e a 0. On the other
hand Sy(r, e)+s+t(ke) Q w±

s+t as e a 0, hence St(w±
s )=w±

s+t, proving the
second relation in (6.13). Finally, from (6.11),

||Sy(r, e)+s(k± e) − q||. [ C5els, C5 q (1+C1) r ||v||., (6.25)
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from which, letting e a 0,

||w±
s − q||. [ C5els, (6.26)

proving the first statement in (6.13), Theorem 6.2 is proved. L

Proof of Theorem 2.11. The manifold

W q W+ 2 W−, W ± q {St(w±
s ): s [ 0 [ t} (6.27)

and both its branches W ± are invariant under St which is invertible on
W ±. By (6.13) W ± originate at s=−. from q. Recalling (6.9), from
(6.10)

||Sy(r, e)+s(k± e) − (q ± elsrv)||. [ C6e2ls, C6 q N(r ||v||.)2, (6.28)

from which, letting e a 0,

||w±
s − (q ± elsrv)||. [ C6e2ls. (6.29)

Next, by (6.1) and recalling that f(q)=0,

dw±
s

ds
=L[w±

s − (q ± elsrv)] ± lelsrv+[f(w±
s ) − f(q) − L(w±

s − q)].
(6.30)

Denoting by ||L||. the norm of the operator L (which is finite), by (2.5),
(6.26), and (6.29) we have:

>dw±
s

ds
+ lelsrv>

.

[ C7e2ls, C7 q ||L||. C6+k2C2
5. (6.31)

Recalling that v(x) % m̃Œ(tg − x) in the sense of (2.49), we set

s0: rels0=
1

`m
, m±

s q w±
s+s0

. (6.32)

Then (6.31) implies

>dm±
s

ds
+ lels 1

`m
v>

.

[ C7e2ls,

which gives (2.52).
The proofs of the monotonicity property of m±

s and of the bound (2.53)
will be given in Proposition 6.5 later, Theorem 2.11 is then proved. L
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We need the following properties of the flow St.

Theorem 6.3 (The Comparison Theorem (11)). Let m, m̃ ¥ L.(R)
be such that m(x) [ m̃(x) for all x ¥ R. Then St(m)(x) [ St(m̃)(x) for all
(t, x) ¥ R+ × R.

Lemma 6.4. Let m ¥ L sym
. (R) be a nonincreasing function on R+.

Then St(m) has the same monotonicity property for all t ¥ R+.

Proof. The flow solution St(m) solves the integral equation

St(m)=e−tm+F
t

0
ds e−(t − s) tanh{b[J f Ss(m)+h]}.

Since J is smooth, the function gt(x) q St(m)(x) − e−tm(x) is differentiable.
Further its spatial derivative g −

t(x) is an antisymmetric function which
satisfies, for any x ¥ R+,

g −

t(x)=F
t

0
ds ps(x)(J− g −

s)(x)+zt(x),

ps q
b

cosh2{b[J f Ss(m)+h]}
,

zt q F
t

0
ds e−tps(J− f mŒ).

(6.33)

To get (6.33) we used that, since gs is differentiable, and since both g −

s and
mŒ are odd functions,

d
dx

(J f Ss(m))=J f g −

s+e−sJ f mŒ=J− g −

s+e−sJ− mŒ,

where for any function u on R+, J− u, is defined in (5.2). By iteration of
(6.33), calling (t, x)=(s0, x0), we get

g −

t(x)= C
.

n=1
F

s0

0
ds1 · · · F

sn − 1

0
dsn

× F
+.

0
dx1 · · · F

+.

0
dxn D

n − 1

k=1
ps(xk) J− (xk, xk+1) zsn

(xn). (6.34)

From the fact that J− \ 0 and mŒ(x) [ 0 for x \ 0 it follows that zs is a non-
positive function on R+. Since J− (x, y) and ps(x) are nonnegative for
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x, y \ 0, we conclude from (6.34) that also g −

t is a non-positive function
on R+. Then St(m) is nonincreasing on R+ because sum of two functions
with this property. The lemma is proved. L

Proposition 6.5. For any s ¥ R, the symmetric functions m±
s are

nonincreasing on R+ and (2.53) holds.

Proof. Since the difference between m±
s and w±

s is only a time shift,
see (6.32), it is enough to prove the proposition for w±

s .
We start with the monotonicity property. We use Theorem 6.2 and

Lemma 6.4. Thus the first step is to show that for e small the functions
k± e=q ± ev are nonincreasing on R+. To this purpose we first notice that,
by definition of v,

vŒ(x)=−
2b

1+l
q(x) qŒ(x)(J f v)(x)+

p
1+l

(JŒ f v)(x). (6.35)

By (2.46), for a suitable constant C8,

sup
x > 1

|ecv xvŒ(x)| [ C8 sup
x > 1

ecv xv(x) < .. (6.36)

Then from (2.41), since cv > c, we get

sup
x > 1

:vŒ(x)
qŒ(x)

: < .. (6.37)

For x ¥ [0, 1], since qŒ(0)=0, we need to show that qœ(0) ] 0. This is
easily seen by noticing that since qŒ(0)=0 and both JŒ and qŒ are anti-
symmetric functions,

qœ(0)=−2b(1 − q(0)2) F
1

0
dy JŒ(y) qŒ(y) < 0. (6.38)

In the last inequality we used that, by our assumptions on the function J
and Proposition 2.9, JŒ(x) qŒ(x) > 0 for x ¥ (0, 1). From (6.37) and (6.38)
we then get

sup
x ¥ R+

:vŒ(x)
qŒ(x)

: < .. (6.39)

Lemma 6.4 and (6.39) imply that for any s [ 0 there is es ¥ (0, r] such that
{Sy(r, e)+s(k± e): e ¥ (0, es]} is a sequence of nonincreasing functions on R+.
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Hence from (6.12) the same property holds for w±
s , s [ 0. Then the mono-

tonicity property of w±
s for all s ¥ R follows from Lemma 6.4.

We are left with the bound (2.53). Since q solves (1.2) and it is strictly
decreasing on R+, it follows that m−

b, h < q(x) < m+
b, h for all x ¥ R. We also

recall that q satisfies (2.41). Since v is a positive function which satisfies
(2.46) with cv > c, we conclude that, for all e small enough,

m−
b, h [ k−e(x) < q(x) < ke(x) < m+

b, h. (6.40)

Then (2.53) follows from Theorem 6.2 and the Comparison Theorem. L

We conclude this section by proving Proposition 6.6 below, which is
a stronger version of Theorem 6.2, since we show that the curves {w±

s }
are the limits, in sup norm, of the curves Sy(r, d)Cd where, for any d > 0,
Cd q {ke: 0 < e < d}.

Proposition 6.6. Let d > 0, s [ 0, and d(s) q elsd. Then:

lim
d a 0

sup
s [ 0

||Sy(r, d)(k± d(s)) − w±
s ||.=0.

Proof. Without loss of generality we restrict to the case with the
plus sign. We need to show that for any g > 0 there is dg > 0 so that
||Sy(r, d)(kd(s)) − w+

s ||. [ g for any d < dg and s [ 0. We approximate w+
s by

St(ke) for suitable values of e and t: given s [ 0 let e0 be such that for
e ¥ (0, e0]

||Sy(r, e)+s(ke) − w+
s ||. [

g

2
. (6.41)

For d < r we have Sy(r, e)+s(ke)=Sy(r, d)(Sy(d(s), e)(ke)). By (6.10),

||Sy(d(s), e)(ke) − kd(s) ||.=||Sy(d(s), e)(ke) − q − ely(d(s), e)ev||.

[ N ||v||2
. d(s)2. (6.42)

We define Dt q St(kd(s)) − St(Sy(d(s), e)(ke)), so that

||Dy(r, d) ||.=||Sy(r, e)+s(ke) − Sy(r, d)(kd(s))||.. (6.43)

The analysis of Dt is identical to that of Dt in the proof of Theorem 6.2. In
fact, by comparing (6.15) with (6.42), we see that Dt satisfies the conditions
defining the function Dt in (6.16) when the parameter e appearing in (6.15)
and (6.16) is replaced by d(s). Then the bound (6.23) applied to Dt

Slow Motion and Metastability for a Nonlocal Equation 741



becomes: ||Dt ||. [ C4 `d(s) for any d ¥ (0, e1] and t [ y(r, d(s)), which
implies: ||Dy(r, d) ||. [ C4 `d for all d ¥ (0, e1]. We then choose dg ¥ (0, e1] so
small that C4 `dg [ g/2, and by (6.41) and (6.43) we have that, for all
d < dg,

||Sy(r, d)(kd(s)) − w+
s ||. [ ||Sy(r, e)+s(ke) − w+

s ||.+||Sy(r, e)+s(ke) − Sy(r, d)(kd(s))||.

[ g.

Proposition 6.6 is thus proved. L

7. GLOBAL STRUCTURE OFW

In this section we prove Theorem 2.12. To this purpose we will define
suitable functions Q+

a [ q [ Q−
a , a a small parameter, which are close to q,

see (7.9) later. We shall prove that the functions m+
s (resp. m−

s ) at a certain
time s are above Q−

a (resp. below Q+
a ). Then, by the Comparison Theorem

it is enough to study the evolution of Q±
a . Using the spectral properties of

the linear operator L, we show that, for a time interval Ta ’ |log a|, the
evolution STa

(Q+
a ) (resp. STa

(Q−
a )) can be bounded from above (resp.

below) by the same functions Q+
a (resp. Q−

a ) suitably translated in space,
see Theorem 7.2 later. Thus, we can iterate the argument getting bounds
at longer times which, combined with general properties of the flow St, lead
to the desired result, Corollary 7.3 later, from which Theorem 2.12 will
follow.

In the sequel we shall need a more refined a priori bound on the
evolution around the critical droplet, which is the content of the following
lemma.

Lemma 7.1. There is K > 0 such that if ut q St(q+u0) − q, u0 ¥

L.(R), then, for all (t, x) ¥ R+ × R,

|ut(x) − eLtu0(x)| [ K F
t

0
ds eL(t − s)(J f eLsu0)2 (x)+KRt[u .], (7.1)

where

Rt[u .]=elt sup
s ¥ [0, t]

{||us ||
3
.+||us ||. ||us − eLsu0 ||.+||us − eLsu0 ||2

.}. (7.2)

Proof. Recalling that ut solves (6.2) and q solves (1.2) we have

f(q+us) − f(q) − Lus=F(J f us)2+
b3

3!
tanh'−(hs)(J f us)3, (7.3)
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where F(x) q − b2q(x)(1 − q(x)2) and hs is a number in the interval with
end-points b[J f q+h] and b[J f (q+us)+h]. Then we rewrite (6.2) as:

ut=eLtu0+F
t

0
ds eL(t − s)[F(J f eLsu0)2+R[us]], (7.4)

where, using (7.3),

R[us]=F[(J f us)2 − (J f eLsu0)2]+
b3

3!
tanh'−(hs)(J f us)3. (7.5)

Since F is a bounded function on R, the first integral on the r.h.s. of (7.4)
is bounded by the first term on the r.h.s. of (7.1) with K=||F||.. We next
rewrite the square bracket on the r.h.s. of (7.5) as

(J f us)2 − (J f eLsu0)2=[J f (us − eLsu0)]2+2(J f eLsu0)[J f (us − eLsu0)].

Then, using tanh'− is bounded and J has compact support, from (2.47) we
have, for any K large enough,

>F
t

0
ds eL(t − s)R[us]>

.

[ KRt[u .].

The lemma is proved. L

Warning. For the rest of the section we shall denote by C a generic
constant whose numerical value may change from line to line.

Let c and l be as in (2.40) and (2.44) respectively. We fix d and R0

such that

0 < d < 1
8 , 3

2 < cR0 < 2 − 4d, (7.6)

and we set, for any a ¥ (0, 1],

Ta q
d

l
|log a|, Ra q R0 |log a|, Da q a1 − d/2. (7.7)

Recalling (2.44), (2.45), and (2.48), there exists an h̄ ¥ (0, hg] such that

(cv − c) R0 [
d

4
and dl−1w > 3 -h ¥ [0, h̄]. (7.8)

Slow Motion and Metastability for a Nonlocal Equation 743



We define the symmetric functions

Q±
a (x) q q±

a (x) 1|x| [ Ra
+[m−

b, h ± a3/2] 1|x| > Ra
, (7.9)

q+
a (x) q q(|x|+a), q−

a (x) q q(0) 1|x| [ a+q(|x| − a) 1|x| > a. (7.10)

Theorem 7.2. Let h ¥ [0, h̄] with h̄ as in (7.8). Then there is
a0 ¥ (0, 1] such that, for any a ¥ (0, a0],

STa
(Q+

a )(x) [ Q+
a (x+Da), STa

(Q−
a )(x) \ Q−

a (x − Da), (7.11)

with Ta and Da as in (7.7).

Proof. From Proposition 2.9 there is a constant c such that |qœ(x)|
[ c |qŒ(x)| for any |x| \ 1. Then, by expanding to second order q±

a (x)
around q(x) for |x| \ 1, and using q+

a (x) [ q(x) [ q−
a (x) for all x ¥ R, we

have for any a small enough,

q+
a (x) [ q(x)+

a
2

qŒ(|x|) 1|x| \ 1, q−
a (x) \ q(x) −

a
2

qŒ(|x|) 1|x| \ 1. (7.12)

Observing qŒ(|x|)=−|qŒ(x)| for any x ¥ R, if we define

j(x) q 1
2 |qŒ(x)| 1|x| \ 1, (7.13)

from (7.9) and (7.12) we obtain:

Q+
a (x) [ q(x) − aj(x)+[m−

b, h − q(x)+a3/2+aj(x)] 1|x| > Ra
, (7.14)

Q−
a (x) \ q(x)+aj(x)+[m−

b, h − q(x) − a3/2 − aj(x)] 1|x| > Ra
. (7.15)

Moreover, from (2.41) and (7.6), for any a small enough,

|m−
b, h − q(x)|+a |j(x)| [ 1

2 a3/2
- |x| > Ra,

so that, if we define

U±
0 (x) q + aj(x) ± 3

2 a3/21|x| > Ra
, (7.16)

from (7.14) and (7.15) we get, for any a small enough,

Q+
a (x) [ q(x)+U+

0 (x), Q−
a (x) \ q(x)+U−

0 (x). (7.17)
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We shall now obtain good bounds on STa
(q+U±

0 ). We can apply
Lemma 7.1 to U±

t q St(q+U±
0 ) − q, getting:

|U±
t − eLtU±

0 | [ K F
t

0
ds eL(t − s)(J f eLsU±

0 )2+KRt[U±
. ]. (7.18)

We will use (7.18) to estimate U±
Ta

, by analyzing separately the various
terms.

Estimate on eLTaU±
0 . Since elTa=a−d, see (7.7), we have

eLTa U±
0 =+ a1 − dp(j) v + aeLTa[j − p(j) v] ± 1

2 a3/2eLTa 1|x| > Ra
, (7.19)

where, recalling the definition of p( · ) and (7.13),

p(j)=F
.

1
dx

v(x)
p(x)

|qŒ(x)| > 0. (7.20)

From the spectral gap property (2.48) and (7.8),

||eLTa[j − p(j) v]||. [ e−wTa ||j − p(j) v||. [ Ca3. (7.21)

Analogously we estimate:

eLTa 1|x| > Ra
=a−dp(1|x| > Ra

) v+eLTa[1|x| > Ra
− p(1|x| > Ra

) v]

[ Ca3/2 − d, (7.22)

where we used p(1|x| > Ra
) [ Cacv R0 with cvR0 > cR0 > 3/2. From (7.19),

(7.21), and (7.22) we obtain:

|eLTa U±
0 ± a1 − dp(j) v| [ Ca3 − d. (7.23)

Estimate on >Ta
0 ds eL(Ta −s)(J f eLsU±

0)2. Using (2.47) with z=0 and
(7.22), we get, for any a small enough,

F
Ta

0
ds eL(Ta − s)(J f eLsU±

0 )2

[ Ca2 F
Ta

0
ds eL(Ta − s)[(J f eLsj)2

+a(J f eLs1|x| \ Ra
)2+`a(J f eLsj)(J f eLs1|x| \ Ra

)]

[ Ca3 − 2d+Ca2 F
Ta

0
ds eL(Ta − s)(J f eLsj)[(J f eLsj)+a2 − d]. (7.24)
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Now, recalling the definitions (7.13) and (2.43), from the asymptotics (2.41)
it follows that j ¥ Xc. Since c < cv we can use (2.47) with z=c. Hence,
since J has compact support, |(J f eLsj)(x)| [ Cels − c |x|. Therefore, by
applying again (2.47) with z=c,

F
Ta

0
ds eL(Ta − s)(J f eLsj)2 [ Ca−2de−c |x|,

so that from (7.24), for all a small enough,

F
Ta

0
ds eL(t − s)(J f eLsU±

0 )2 [ C(a2 − 2de−c |x|+a3 − 2d). (7.25)

Estimate on Rt[U
±
. ]. We use Lemma 6.1 to obtain a priori bounds.

Since ||U±
0 ||. [ Ca, comparing the definitions (6.4) and (7.7) and using

d < 1 we conclude that for all a small enough s(U±
0 ) > Ta. Therefore from

(6.5) and (6.6)

||U±
t ||. [ (1+C1) a1 − d, ||U±

t − eLtU±
0 ||. [ Na2 − 2d

-t [ Ta. (7.26)

Recalling (7.2), from (7.26) we get

RTa
[U±

. ] [ Ca3 − 4d. (7.27)

Collecting (7.18), (7.23), (7.25), and (7.27), we conclude that, for any a
small enough,

|U±
Ta

(x) ± a1 − dp(j) v(x)| [ C(a2 − 2de−c |x|+a3 − 4d). (7.28)

Therefore, from the Comparison Theorem and (7.17), recalling U±
t =

St(q+U±
0 ) − q, we finally get

STa
(Q+

a )(x) [ q(x) − C[a1 − dv(x) − a2 − 2de−c |x| − a3 − 4d], (7.29)

STa
(Q−

a )(x) \ q(x)+C[a1 − dv(x) − a2 − 2de−c |x| − a3 − 4d]. (7.30)

Next we shall find good bounds on Q±
a (x ± Da). We first observe that,

since Da [ 1, |x| [ Ra − 1 implies |x+Da | [ Ra while |x| > Ra+1 implies
|x+Da | > Ra. Moreover, from (2.41), (7.6), and (7.10), |q±

a (x ± Da) − m−
b, h |

[ a3/2 if Ra − 1 < |x| [ Ra+1 and a is small enough. Hence:

Q+
a (x+Da) \ q+

a (x+Da) 1|x| [ Ra+1+[m−
b, h+a3/2] 1|x| > Ra+1,

Q−
a (x − Da) [ q−

a (x − Da) 1|x| [ Ra+1+[m−
b, h − a3/2] 1|x| > Ra+1.
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Now we notice q+
a (x+Da) \ q+

a+Da
(x) and q−

a (x − Da) [ q−
a+Da

(x) for all
x ¥ R. Moreover, since |qœ(x)| [ c |qŒ(x)| for |x| \ 1, by expanding to the
second order for |x| > 1 and to the first one for |x| [ 1, we get, if a is small
enough,

q+
a+Da

(x) \ q(x) − (a+Da) k(x), q−
a+Da

(x) [ q(x)+(a+Da) k(x),
(7.31)

where

k(x) q 2[|qŒ(x)|+||qŒ||. 1|x| [ 1], (7.32)

hence

Q+
a (x+Da) \ [q(x) − (a+Da) k(x)] 1|x| [ Ra+1+[m−

b, h+a3/2] 1|x| > Ra+1,
(7.33)

Q−
a (x − Da) [ [q(x)+(a+Da) k(x)] 1|x| [ Ra+1+[m−

b, h − a3/2] 1|x| > Ra+1.
(7.34)

We can now conclude the proof of the theorem. We consider first the
case |x| [ Ra+1. Since v is strictly positive and obeys the asymptotics
(2.46), and q satisfies (2.41), from (7.8) and (7.32) we have

v(x) \ Cad/4k(x) - |x| [ Ra+1. (7.35)

On the other hand, using (7.6), a2 − 2de−c |x|+a3 − 4d [ Cak(x) for all |x| [

Ra+1. Therefore, for any a small enough,

a1 − dv(x) − a2 − 2de−c |x| − a3 − 4d \ Ca1 − 3d/4k(x) - |x| [ Ra+1. (7.36)

Since (a+Da) a−1+3d/4 vanishes as a a 0, (7.11) for |x| [ Ra+1 follow from
(7.29), (7.30), (7.33), (7.34), and (7.36).

Finally we consider the case |x| > Ra+1. Using cvR0 > cR0 and (7.6),
from (7.29) and (7.30) we get

lim
a a 0

a−3/2 sup
|x| > Ra+1

|STa
(Q±

a )(x) − m−
b, h |=0. (7.37)

Then (7.11) for |x| > Ra+1 and a small enough follow from (7.33), (7.34),
and (7.37). L
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Corollary 7.3. In the same hypothesis of Theorem 7.2, there is
a1 ¥ (0, a0] such that, for any a ¥ (0, a1],

lim
t Q+.

||St(Q+
a ) − m−

b, h ||.=0, (7.38)

lim
t Q+.

St(Q−
a )(x)=m+

b, h -x ¥ R. (7.39)

To prove the above corollary we need the following Barrier Lemma.

Lemma 7.4 (The Barrier Lemma (11)). There are V and Cg positive
so that if m, m̃ ¥ L.(R; [− 1, 1]) and, for some x0 ¥ R and T > 0,
m(x)=m̃(x) for all |x − x0 | [ VT, then:

|St(m)(x0) − St(m̃)(x0)| [ Cge−T.

Proof of Corollary 7.3. We first prove (7.38). By (7.11) and the
Comparison Theorem, SnTa

(Q+
a )(x) [ Q+

a (x+nDa) for any integer n and
x ¥ R. From (7.9) the function on the r.h.s. of the above inequality is iden-
tically equal to m−

b, h+a3/2 for all x > Ra − nDa. On the other hand SnTa
(Q+

a )
is a symmetric function for all integer n, then SnTa

(Q+
a )(x) [ m−

b, h+a3/2

for any x ¥ R and n > Ra/Da. Using again the Comparison Theorem and
recalling m−

b, h [ Q+
a , we conclude that:

m−
b, h [ St(Q+

a ) [ St(m−
b, h+a3/2) -t > 11+

Ra

Da

2 Ta. (7.40)

We now observe that St(m−
b, h+a3/2) solves the homogeneous equation:

dr(t)
dt

=−r(t)+tanh{b[r(t)+h]}, (7.41)

with initial datum m−
b, h+a3/2. Since the interval (−1, m0

b, h) is a basin of
attraction of the stationary solution m−

b, h, for any a small enough,

lim
t Q+.

St(m−
b, h+a3/2)=m−

b, h. (7.42)

From (7.40) and (7.42) we get (7.38).
We shall next prove (7.39). We need to show that for any x0 ¥ R and

e > 0 there is Te, x0
so that

|St(Q−
a )(x0) − m+

b, h | < e -t > Te, x0
. (7.43)
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By (7.11) and the Comparison Theorem, SnTa
(Q−

a )(x) \ Q−
a (x − nDa) for

any integer n and x ¥ R. Recalling the definition (7.9), SnTa
(Q−

a )(x) \

q(x − nDa − a) for any x > nDa. Since Q−
a is symmetric and nonincreasing

for x > 0, from Lemma 6.4, we get SnTa
(Q−

a )(x) \ q(0) for all x ¥ [0, nDa].
Hence:

SnTa
(Q−

a )(x) \ q(0) 1|x| [ nDa
+q(|x| − nDa) 1|x| \ nDa

.

We conclude that for any R > 0 we can find a time TR so that

St(Q−
a )(x) \ q(0) - |x| [ R, -t > TR. (7.44)

We can now prove (7.43). Given any e > 0 we choose Te so large that
Cge−Te < e/2 and R \ |x0 |+VTe, Cg, V as in the Barrier Lemma 7.4. Hence
from the Comparison Theorem, (7.44), and the Barrier Lemma it follows
that:

St(Q−
a )(x0) > St(q(0)) −

e

2
-t > TR+Te. (7.45)

On the other hand since q(0) belongs to the basin of attraction of m+
b, h

w.r.t. the dynamics (7.41) (in fact m0
b, h < 0 < q(0) < m+

b, h), there is T̄ such
that:

|St(q(0)) − m+
b, h | <

e

2
-t > T̄. (7.46)

Recalling Q−
a [ m+

b, h, from the Comparison Theorem, (7.45), and (7.46) we
finally get

m+
b, h − e < St(Q−

a ) [ m+
b, h -t > T̄ K (Te+TR),

which implies (7.43) with Te, x0
=T̄ K (Te+TR). L

Proof of Theorem 2.12. Let w±
s , s [ 0, be as in Theorem 6.2. We

will next prove that for any a > 0 small enough there is sa < 0 such that

w−
sa

(x) [ Q+
a (x) and Q−

a (x) [ w+
sa

(x) -x ¥ R. (7.47)

Theorem 2.12 will then follows from the Comparison Theorem, Corollary 7.3,
(2.53), and (7.47) (recall that the relation between w±

s and m±
s is only a time

shift, see (6.32)).
To prove (7.47) we need a more accurate estimate on the difference

w±
s − (q ± elsrv). This is the content of Proposition 7.5 later.
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Proposition 7.5. Let w±
s be as in Theorem 6.2 and c as in (2.40).

Then there is a constant C̄ so that, for all x ¥ R and s [ 0,

|w±
s (x) − q + elsrv(x)| [ C̄(e2ls − c |x|+e3ls). (7.48)

Proof. We apply Lemma 7.1 with u0= ± ev, getting

|St(k± e) − q + elsev(x)| [ Ke2 F
t

0
dtŒ e2ltŒeL(t − tŒ)(J f v)2+KRt[S.(k± e) − q].

(7.49)

We bound (J f v)2 by ||v||. J f v; we next observe that since J has compact
support and v satisfies (2.46) with cv > c, hence J f v ¥ Xc, see (2.43). Then,
by applying (2.47) with z=c,

Ke2 F
t

0
dtŒ e2ltŒeL(t − tŒ)(J f v)2 [ KC1 ||J f v||c ||v||. l−1e2e2lt − c |x|. (7.50)

We now observe that for t=y(r, e)+s, s [ 0, the r.h.s. of (7.50) is
bounded, uniformly as e a 0, by const e2ls − c |x|. Analogously, from (6.25),
(6.28), and (7.2), we get that KRy(r, e)+s[S.(k± e) − q] is bounded by
const e3ls. The proposition is proved. L

Proof of (7.47). We first observe that, arguing as in getting (7.33)
and (7.34), for all a small enough we have:

Q+
a (x) \ [q(x) − ak(x)] 1|x| [ Ra

+[m−
b, h+a3/2] 1|x| > Ra

, (7.51)

Q−
a (x) [ [q(x)+ak(x)] 1|x| [ Ra

+[m−
b, h − a3/2] 1|x| > Ra

, (7.52)

where k is defined in (7.32). We then set

sa q
r
l

log a with
1
2

< r < 1 −
d

4
and d as in (7.6). (7.53)

Recalling (2.46) and that cvR0 > cR > 3/2, from (7.48) it follows

lim
a a 0

a−3/2 sup
|x| > Ra

|w±
sa

(x) − m−
b, h |=0. (7.54)

On the other hand, by using (7.35), we also have, if a is small enough,

elsarv(x) > ak(x) -x ¥ R. (7.55)

Then (7.47) follows from (7.48), (7.51)–(7.55). Theorem 2.12 is proved. L
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8. THE QUASI-INVARIANT MANIFOLD AND THE SPECTRAL

ESTIMATES

In this section we prove Theorem 2.2, Proposition 2.3, Lemma 2.4,
and Theorem 2.5. Most of the statements follow from the results proved in
refs. 9 and 10, as we are going to explain.

The first step is the definition of the function nt which characterizes
the quasi-invariant manifold Ma, o={nt: t ¥ Ca, o}. As we already men-
tioned in the Introduction, the existence of the critical droplet has been
proved in ref. 10 by using the Newton method: nt will be a slight modifica-
tion of the starting point of the Newton map.

Recalling the properties of the instanton stated in (2.7), we consider
the following symmetric function:

m0
t(x) q m̄t(x) − ae−a(t+|x|), m̄t(x)=m̄(t − |x|). (8.1)

The operator Lm (see (2.3)) for m in a neighbor of m0
t has been studied in

details in Theorems 2.1, 2.3, and 2.4 of ref. 9, see also Theorem 3.2 of
ref. 10, and for the reader convenience we now recall these results.

We first define the neighbor of m0
t as the set G(cg, t, dg), t > 1,

cg, dg > 0 of all functions m ¥ C sym(R, [− 1, 1]) such that

|m(x) − m0
t(x)| [ cg ˛e−2atea(t − x) for 0 [ x [ t

e−2at for t < x
(8.2)

and

− F
|x − t| [ `t

dx[m(x) − m0
t(x)] m̄Œ(t − x)2 m̄(t − x) \ − cge−(2a+dg) t. (8.3)

Spectral Analysis in G(c g, t, d g). Some of the results that we need
are true for t sufficiently large, so we assume this condition even if it is not
always necessary. In ref. 9 the results are stated in the interval [0, a] with
Neumann boundary conditions, but since the estimates are uniform in a

they include the case a=. treated here.
For all m ¥ G(cg, t, dg) the operator Lm has a strictly positive eigen-

value lm with strictly positive right and left eigenfunctions denoted,
respectively, by vg

m and vm=pmvg
m (recall the definition of pm in (2.3)). For

any m ¥ G(cg, t, dg) we define the linear functional pm on L sym
. (R) as in

(2.21) and we assume that vg
m and vm are normalized in such a way that

pm(vm)=1. In Theorem 2.3 of ref. 9 it has been proved that there are c±

and cŒ all positive so that c− e−2at [ lm [ c+e−2at and
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vm(x) [ c+e−aŒ |t − x|, aŒ=a − cŒe−2at, (8.4)

|vm(x) − m̃ −

t(x)| [ c+e−2atea |t − x|t4 for |t − x| [ t/2. (8.5)

where m is defined in (2.8) and recall m̃t(x)=`m m̄(t − x). Let us remark
that by choosing t large enough the parameter aŒ can be as close to a as
needed. An easy consequence of (8.4) and (8.5) is the existence of a con-
stant c3 > 0 such that:

|pm(k)| [ c3 ||k||. -k ¥ L sym
. (R). (8.6)

In Theorem 2.4 of ref. 9 it is proved that there exists t0 > 1 such that for
any t > t0 and m ¥ G(cg, t, dg) there exist constants d± > 0 so that if k is
such that pm(k)=0,

||eLmt k||. [ d+e−d− t ||k||.. (8.7)

Moreover there is c4 > 0 such that for all k ¥ L sym
. (R)

||L−1
m k||. [ c4l−1

m ||k||., ||L−1
m [k − pm(k)]||. [ c4 ||k − pm(k)]||.. (8.8)

In the case m=m0
t stronger results hold. In order to avoid heavy notation

we abbreviate:

L̄t=Lm0
t
, p̄t=pm0

t
, l̄t=lm0

t
, v̄g

t =vg
m0

t
, v̄t=vm0

t
, p̄t=pm0

t
.

In Theorem 11.1 of ref. 9 it is proved that there are g ¥ (a, 3a/2), t1 > t0,
and c5 > 0 such that, for all t > t1,

|“t v̄t(x) − m̃'

t (x)| [ c5e−att4 for |t − x| [ t/2, (8.9)

|“t v̄t(x)| [ c5t2v̄t(x) for |t − x| \ t/2, (8.10)

:dl̄t

dt
: [ c5e−gt. (8.11)

Setting

“tp̄t(k)=F
.

0
dx “t v̄g

t (x) k(x), k ¥ L sym
. (R), (8.12)

from (8.9) and (8.10) it follows that, for some c6 > 0,

|“tp̄t(k)| [ c6 ||k||.. (8.13)
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Furthermore from Proposition 6.3 of ref. 9 (see also Eq. (6.38) of ref. 10),
for any z ¥ (0, a) there exists c7 > 0 so that, for any t, x, y > 0,

e L̄tt(x, y) [ c7 l̄tte l̄tte−z |x − y|. (8.14)

We now come back to the construction of nt. The definition (8.1) is
motivated by the fact that f(m0

t) (see (2.1)) is small for h small and t large.
With this in mind and following ref. 10 we define:

bt(x) q − m0
t(x)+tanh{b(J f m0

t)(x)}, (8.15)

so that f(m0
t)=bt+hp̄t+O(h2). In Lemma 5.1 of ref. 10 it is shown that

given a0 > a as in (2.7) there is c8 > 0 so that, for all t > 1 and x \ 0,

|bt(x)+e−2atk0
t(x)| [ c8(e−a0t10 [ x [ 1+e−2a(t+x)), (8.16)

where k0
t(x)=k0(t − x) and

k0(y) q
aeay

1 − m2
b

[m2
b − m̄2(y)]. (8.17)

Observe that from (2.7) it follows that there is c9 > 0 such that

||k0||. [ c9. (8.18)

From the estimate (8.16) the leading term in the projection of f(m0
t) is

V(t)/`m (with V(t) as in (2.16)): this is the content of the next lemma.

Lemma 8.1. There is a0 > 1 such that for any h < e−2aa0 the follow-
ing holds. There exists d3 > 0 such that, for any o > 0 and any t ¥ Ca0, o,

|`m p̄t(bt+hp̄t) − V(t)| [ Ce−(2a+d3) t. (8.19)

Proof. We choose a0 > t1 so large that a0+aŒ > 2a (aŒ as in (8.4)).
Then, from (8.4) and (8.16), it is easy to check we can find d4 > 0 such that:

|p̄t(bt)+e−2atp̄t(k0
t)| [ Ce−(2a+d4) t. (8.20)

From (8.4) and (8.18) we have:

p̄t(k0
t)=F

3t/2

t/2
dx

v̄t(x)
p̄t(x)

k0
t(x)+O(e−aŒt/2).
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On the other hand, by the definitions (2.10), (8.17), recalling that pm̄=
b(1 − m̄2), and using the estimates (2.7) and (8.18), we also have:

`m K=`m F dx
m̄Œ(x)
pm̄(x)

k0(x)=F
3t/2

t/2
dx

m̃ −

t(x)
pm̄t

(x)
k0

t(x)+O(e−at/2).

From (8.1) and (8.5) we conclude that

|p̄t(k0
t) − `m K| [ Ce−aŒt/2. (8.21)

We finally observe that

p̄t(p̄t)=2mb `m − F
.

t

dx m̃Œ(x)+F
.

0
dx(v̄t − m̃ −

t)(x)

=2mb `m+O(e−aŒt/2), (8.22)

where in the last equality we used again (2.7), (8.4), and (8.5). From (8.20),
(8.21), and (8.22) we get (8.19) for a suitable d3 > 0. L

We now construct the function nt in such a way that the main contri-
bution to f(nt) is given by p̄t(bt+hp̄t) v̄t.

Definition 8.2. Given t > a0 we define the symmetric function kt as
the solution of

L̄tkt+bt+hp̄t − p̄t(bt+hp̄t) v̄t=0. (8.23)

The quasi-invariant manifold Ma, o is then defined via the symmetric
functions:

nt(x) q m0
t(x)+kt(x), t ¥ Ca0, +.. (8.24)

We note that the function kt is well defined:

kt=−F
+.

0
dt e L̄ttT̄t(bt+hp̄t),

where T̄t is the projection acting on L sym
. (R), i.e., T̄tk=k − p̄t(k) v̄t.

Observe that, by (8.4) and (8.6),

||T̄tk||. [ C ||k||.. (8.25)
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Lemma 8.3. In the same hypothesis of Lemma 8.1, there exists
d5 > 0 such that, for any o > 0 and any t ¥ Ca0, o,

||kt ||. [ Ce−(a+d5) t, ||“tkt ||. [ Ce−(a+d5) t. (8.26)

Proof. From (8.16), (8.18), and (2.12), since p̄t [ b,

||bt+hp̄t ||. [ C(e−2at+e−a0t), (8.27)

so that, by (8.8) and (8.25),

||kt ||. [ C(e−2at+e−a0t). (8.28)

To compute the derivative of kt we differentiate (8.23) and, recalling
(8.12), we get:

L̄t “tkt+“tp̄tJ f kt= − “t(bt+hp̄t)+p̄t(“t(bt+hp̄t)) v̄t

+“tp̄t(bt+hp̄t) v̄t+p̄t(bt+hp̄t) “t v̄t. (8.29)

We now proceed as in the proof of Proposition 4.2. Recalling the definition
of the operator T̄t, we rewrite (8.29) as follows:

L̄t “tkt=−T̄t(“tp̄tJ f kt) − T̄t(“t(bt+hp̄t))+p̄t(bt+hp̄t) T̄t “t v̄t

− [p̄t(“tp̄tJ f kt) − “tp̄t(bt+hp̄t) − p̄t(bt+hp̄t) p̄t(“t v̄t)] v̄t.

Since bt+hp̄t=−L̄tkt+p̄t(bt+hp̄t) v̄t then

“tp̄t(bt+hp̄t)=−“tp̄t(L̄tkt)+p̄t(bt+hp̄t) “tp̄t(v̄t). (8.30)

We next observe that p̄t(“t v̄t)+“tp̄t(v̄t)=0. We then get:

L̄t “tkt= − T̄t[“t(bt+hp̄t)+“tp̄tJ f kt − p̄t(bt+hp̄t) “t v̄t]

− [p̄t(“tp̄tJ f kt)+“tp̄t(L̄tkt)] v̄t. (8.31)

By standard arguments the derivative “tkt is defined by the solution to
(8.31), whose existence is guaranteed from the existence of L̄−1

t , see (8.8).
In order to prove the second inequality in (8.26) we need to bound the

various terms on the right hand side of (8.31). We start with the term “tbt.
Let Rt be the function defined as:

Rt(x)={m0
t(x) − [m̄(t − x) − ae−a(t+x)]} 1x ¥ [− 1, 0]

={[m̄(t+x)+ae−a(t+x)] − [m̄(t − x)+ae−a(t − x)]} 1x ¥ [− 1, 0].
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Furthermore:

“tRt(x)={m̄Œ(t+x) − aae−a(t+x) − m̄Œ(t − x)+aae−a(t − x)} 1x ¥ [− 1, 0].
(8.32)

Then, by (2.7),

||Rt ||.+||“tRt ||. [ Ce−a0t. (8.33)

Since m0
t(x)=m̄(t − x) − ae−a(x+t)+Rt(x) if x > − 1, by Taylor expansion

and using that Lm̄m̄Œ=0, after some simple computations we easily get:

“tbt(x)= − aaLm̄e−a( · +t)(x)+Lm̄ “tRt(x)

+b2 tanhœ(z)[− ae−a(x+t)+Rt(x)](J f “tm0
t)(x)

where z=z(x) is a number in the interval with end-points b(J f m̄)(t − x)
and b(J f m̄)(t − x) − a(J f e−a( · +t))(x)+(J f Rt)(x). By using (2.6) and
(2.7), we have, for all x \ 0,

|Lm̄e−a( · +t)(x)|=e−a(t+x) :1 −
(pm̄J f m̄)(t − x)

1 − m2
b

:

[ Ce−a(t+x)e−a |t − x| [ Ce−3at/2. (8.34)

By (8.33) ||Lm̄ “tRt ||. [ Ce−a0t. Then, since ||tanhœ||. [ 2, for x \ 0,

|b2 tanhœ(z)[− ae−a(x+t)+Rt(x)](J f “tm0
t)(x)|

[ C(e−a(t+x)+e−a0t) e−a |t − x| [ C(e−3at/2+e−a0t).

By (8.34) and the above estimates, ||“tbt(x)||. [ C(e−3at/2+e−a0t). From
(2.12) and the fact that “tp̄t is uniformly bounded, we conclude that:

||“t(bt+hp̄t)||. [ C(e−3at/2+e−a0t). (8.35)

To bound the second term on the right hand side of (8.31) we use
again that “tp̄t is uniformly bounded and the bound (8.28), getting:

||“tp̄tJ f kt ||. [ C(e−2at+e−a0t). (8.36)

The third term on the right hand side of (8.31) is bounded by using (8.19),
(2.12) and (8.9), (8.10), obtaining

||p̄t(bt+hp̄t) T̄t(“t v̄t)||. [ Ce−2at. (8.37)
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Finally, for the last terms on the right hand side of (8.31) we apply the
same argument as in Eqs. (4.11) and (4.12) to which we refer for details.
Then:

p̄t(“tp̄tJ f kt)+“tp̄t(L̄tkt)=l̄t F
.

0
dx kt

1“t v̄t

p̄t

−
“tp̄t

p̄2
t

v̄t
2 . (8.38)

Therefore, by (8.28),

||p̄t(“tp̄tJ f kt)+“tpt(L̄tkt)||. [ Cl̄t(e−2at+e−a0t). (8.39)

From (8.8), (8.31), and the estimates (8.35), (8.36), (8.37), and (8.39) we
finally obtain:

||“tkt ||. [ C(e−3at/2+e−a0t). (8.40)

Setting d5=min{a/2; a0 − a}, the inequalities (8.26) follow from (8.28) and
(8.40). L

Proof of Theorem 2.2. Equations (2.13) and (2.14) follow from the
definition (8.24) of nt and the estimates (8.26). Recalling the definition
(8.15), we next write:

f(nt)=tanh{b[J f (m0
t+kt)+h]} − tanh{bJ f m0

t}+bt − kt,

from which, by Taylor expansion to second order and using (8.23),

f(nt)=L̄tkt+hp̄t+bt+R(kt, h)=p̄t(bt+hp̄t) v̄t+R(kt, h),

where |R(kt, h)| [ C(||kt ||2
.+h2). From (8.19), (8.26), and (2.12) we get

(for t ¥ Ca0, o):

||f(nt) − V(t) “tnt ||.

[ Ce−2at ||v̄t − `m “tnt ||.+C(e−(2a+d3) t+e−2(a+d5) t+e−4at).

On the other hand, by (8.4), (8.5), and the second inequality in (8.26),

||v̄t − `m “tnt ||. [ C(e3at/2t4+e−aŒt+e−(a+d5) t).

By the above bounds the estimate (2.15) follows for a suitable d0 > 0. L
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To prove Proposition 2.3 we have to show that nt+h ¥ G(cg, t, dg).
To this end we need more refined estimates on kt, and this is done in the
next lemma. We first introduce some notation. We define

Ct q F
t2

0
dt e L̄ttT̄t(bt+hp̄t).

Then, from (8.7), (8.25), and (8.27),

||kt − Ct ||. [ Ce−d− t2
(e−2at+e−a0t). (8.41)

Recalling (8.16) and (8.17), we write:

Ct=Pt+Qt, Pt q F
t2

0
dt e L̄ttT̄t(bt+kt),

kt(x) q e−2atk0
t(x), Qt q − F

t2

0
dt e L̄ttT̄t(kt − hp̄t).

(8.42)

Lemma 8.4. For each ag < a there exists Cg > 0 so that

|Pt(x)| [ Cg[e−ag(t+x)+e−2at(e−agt/41|x − t| [ `t+1|x − t| > `t)]. (8.43)

Furthermore:

|Qt(x)| [ Ce−2at. (8.44)

Proof. The proof of this lemma is similar to the proof of the second
inequality in Equation (6.1) of ref. 10, therefore we only give an outline of
the argument, by referring to ref. 10 for more details. We first prove (8.44).
By (8.7), (8.18), (8.25), and (2.12) we have:

||Qt ||. [ C F
t2

0
dt e−d− t(||hp̄t ||.+||kt ||.) [ Ce−2at. (8.45)

Since T̄tk=k − p̄t(k) v̄t and ||v̄t ||. [ C, by (8.16) and (8.20),

|Pt(x)| [ Ct2e−(2a+d4) t+F
t2

0
dt F

+.

0
dy e L̄tt(x, y)(e−a0t1y ¥ [0, 1]+e−2a(t+y)).
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An estimate of the last integral can be found in ref. 10 but, since it is not
written in the form we need, we give the argument below. From (8.4) and
(8.14) we get, for any x \ 0,

F
t2

0
dt F

+.

0
dy e L̄tt(x, y) e−a0t1y ¥ [0, 1] [ Ct2e−(a0t+zx). (8.46)

Again by (8.14),

F
t2

0
dt F

+.

0
dy e L̄tt(x, y) e−2a(t+y) [ Ct2e−2at F

+.

0
dy e−z |x − y|e−2ay.

The integral on the r.h.s. is uniformly bounded; moreover, if |t − x| [ `t

then, since |x − y| \ |y − t| − |x − t|,

F
+.

0
dy e−z |x − y|e−2ay=F

+.

0
dy e−z |x − y|e−2ay(1|y − t| [ t/2+1|y − t| > t/2)

[ C(e−3a/2+ez(`t − t/2)).

Collecting all the above estimates we obtain (8.43) by choosing ag < z

(recall that in (8.14) the parameter z ¥ (0, a) can be fixed arbitrarily close
to a). L

Proof of Proposition 2.3. From (2.12), (8.41), (8.43), and (8.44) we
easily get that kt+h satisfies the bounds on the right hand side of (8.2) for
a suitable constant cg if t > a0 is chosen large enough. Instead the estimate
(8.3) is not immediate. By (8.41), (8.42), and (8.43) there is d6 > 0 so that

:F
|x − t| [ `t

dx[kt(x)+h − Qt(x)] m̄Œ(t − x)2 m̄(t − x) : [ Ce−(2a+d6) t. (8.47)

(note that since (m̄Œ)2 m̄ is antisymmetric the constant +h does not contri-
bute to the integral). The contribution of Qt to the above integral has been
estimated in Section 8 of ref. 10. More precisely, setting

M2 q F
|x − t| [ `t

dx Qt(x) m̄Œ(t − x)2 m̄(t − x),

it is proved that there is d7 such that |M2 − M3 | [ Ce−(2a+d7) t, where

M3 q − F
|x − t| [ `t

dx m̄Œ(t − x)2 m̄(t − x) F
t2

0
dt F dy Gt, t(x, y)(hp̄t − kt)(y),
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with Gt, t(x, y) explicitly given in Eq. (8.10) of ref. 10 and satisfying
Gt, t(t − x, y − t)=Gt, t(t+x, y+t). It is finally shown that M3 is bounded
by the r.h.s. of (8.3): here we only remark that, since (m̄Œ)2 m̄ is antisym-
metric, only the odd part (w.r.t. t) of hp̄t − kt contributes to the integral,
and since p̄t is even, only the odd part of kt survives. The estimate of this
last term uses the fact that J is nonincreasing, we refer to ref. 10 for the
details.

We have thus proved that for any o > 0 there exists a1 > a0 and suit-
able positive constants cg and dg such that nt+h ¥ G(cg, t, dg) for all
t ¥ Ca1, o. Therefore Proposition 2.3 as well as the estimates (2.23) and (2.22)
follow from the spectral analysis in G(cg, t, dg). L

Proof of Lemma 2.4. The proof of inequalities (2.24) and (2.25) can
be done following line by line that one of (8.9), (8.10), and (8.11) given
in Section 11 of ref. 9. The arguments given there apply also in our case
(where m0

t is replaced by nt): the key tool is Lemma 8.3, which gives suf-
ficiently strict bounds on nt − m0

t. Finally, recalling that vt=ptvg
t and

that ||“t pt ||. [ C, (2.26) follows from (2.18) and (2.25). We next prove
(2.27)–(2.29). By the second inequality in (8.26) and recalling (8.1) we have:

||`m “tnt − m̃ −

t ||. [ Ce−at. (8.48)

On the other hand, since nt ¥ G(cg, t, dg), from (8.4) and (8.5) it follows
that ||vt − m̃ −

t ||. [ Ce−aŒt/2, (vnt
=vt). Then, since pt(vt)=1, from (2.22) we

get |`m pt(“tnt) − 1| [ Ce−aŒt/2. Collecting together the above estimates,
(2.27) and (2.28) follow. We are left with the proof of (2.29). By (2.18),
(2.24), (2.25), (8.26), and (8.48) we have:

:“tpt(“tnt) − `m F
+.

0
dx

m̄œ(t − x) m̄Œ(t − x)
pm̄(t − x)

: [ Ce−aŒt/2.

But, since m̄ is odd and pm̄ even,

F dx
m̄œ(t − x) m̄Œ(t − x)

pm̄(t − x)
=0 -t > 0.

Then by (2.7) and the previous estimate (2.29) follows. L

Proof of Proposition 2.10. The critical droplet q=nt̄+j̄ belongs
to the set G(cg, t̄, dg) for h small. The existence and uniqueness of cv > c

solving (2.45) follows from Lemma 3.1 of ref. 9. The proof of (2.46) is not
given in ref. 9, but it can be done in the same way as the proof of (2.41) in
Section 5. In fact, recalling the definition (2.42) of the linear operator L, we
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can rewrite the equation for the eigenfunction v as v=(1+l)−1 pJ f v;
then, by arguing as in Section 5, we have:

v(x+tq)=F
s

s − 1
dy G̃s(x, y) v(y+tq), -x > s \ a,

with tq, a as in (5.19) and

G̃s(x, y) q C
.

n=1

1
(1+l)n F

+.

s
dy1 · · · F

+.

s
dyn − 1 D

n

i=1
ptq

(yi − 1) J(yi − 1 − yi).

Finally (2.47) is exactly Eq. (2.23) of ref. 9, the only difference here is that
this estimate can be proved also for z=cv, as it can be checked by exploit-
ing the proof in Section 10 of ref. 9. The others statements of Proposi-
tion 2.10 follow from the spectral analysis in the set G(cg, t̄, dg). L

Proof of Theorem 2.5. In Theorem 2.2, Proposition 2.3, and
Lemma 2.4 we have introduced functions ai=ai(o) and ci=ci(o) for
i=0, 1, 2 (which we can assume nondecreasing). In the sequel, given ō > 0,
we shorthand āi=ai(ō) and c̄i=ci(ō), i=0, 1, 2. For e > 0 and ā > ā2 to be
fixed, we define:

F: Cā, ō ×Bā, ō, e Q R: F(t, m)=pt(nt − m).

Clearly F(t, nt)=0 for all t ¥ Cā, ō. Given a3 > ā and o < ō, we next apply
the contraction mapping principle in the first argument of the function

G: Cā, ō ×Bā, ō, e × Ca3, o Q R: G(t, m, tg)=t − [“tF(tg, ntg)]−1 F(t, m).

Since “tF(tg, ntg)=ptg(“tgntg) then

“tG=ptg(“tgntg)−1 [ptg(“tgntg) − pt(“tnt)+“tpt(nt − m)],

from which, by using (2.26) and (2.28),

|“tG| [ (`m+c̄2)(|ptg(“tgntg) − pt(“tnt)|+c̄2 ||m − nt ||.).

But (2.14) implies ||nt − ntg ||. [ (c̄0+||m̄Œ||.) |t − tg|, hence there is a con-
stant C=C(ō) so that:

|“tG| [ C(|ptg(“tgntg) − pt(“tnt)|+|t − tg|+||m − ntg ||.).

Using again (2.28), we can now fix ā so large that (for all h < e−2aa3)

C |ptg(“tgntg) − pt(“tnt)| < 1
8 .
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Then, if |t − tg| < r and ||m − ntg ||. < ē with r, ē > 0 small enough, we find
|“tG| < 1/4 (for all h < e−2aa3). Moreover, if we assume also a3 > ā+r and
o < ō − r, the function G( · , m, tg) is defined for all t ¥ (tg − r, tg+r) and

|G(t, m, tg) − tg| [ |G(t, m, tg) − G(t, ntg, tg)|

+|G(t, ntg, tg) − G(tg, ntg, tg)|

[ |ptg(“tgntg)|−1 |pt(ntg − m)|+
|t − tg|

4

[ c̄2(`m+c̄2) ||ntg − m||.+
|t − tg|

4

[ c̄2(`m+c̄2) e+
r
4

<
r
2

,

where we used (2.22), (2.28), and we further assumed ē so small that
4c̄2(`m+c̄2) ē < r. From the contraction mapping principle we get that
there is a unique solution t=X(m, tg) of the equation F(t, m)=0 in
(tg − r, tg+r) for any tg ¥ Ca3, o and m such that ||m − ntg ||. < ē. Moreover
m W X(m, tg) is C1 and |X(m, tg) − tg| < r/2.

We finally observe that if a3 is large enough there is e0 ¥ (0, ē] such
that the following holds. If tg, tg g ¥ Ca3, o and ||ntg − ntg g ||. < 2e0 then
|tg − tg g| < r/2. In fact, by using (2.7) and (2.14), from the condition
|tg − tg g| \ r/2 it follows there is C=C(ō) so that

|ntg(0) − ntg g(0)| \ (aae−aa3 − Ce−min{a0; a+d0} a3)
r
2

,

and, for a3 large enough, the r.h.s. is not smaller than 2e0 for any suffi-
ciently small e0.

We now prove Theorem 2.5. Given o > 0, we fix ō > o and then we
introduce the parameters e0, ā, and a3 so that all the previous statements
hold. Then we define the map X: Ba3, o, e0

Q Cā, ō by setting X(m)=X(m, tg)
if ||m − ntg ||. < e0 (the existence of such tg ¥ Ca3, o follows from (2.30)). We
see that the definition is well posed: assume ||m − ntg g ||. < e0 for some other
tg g ¥ Ca3, o, hence ||ntg − ntg g ||. < 2e0 and then |tg − tg g| [ r/2 for what
stated before. Then |X(m, tg g) − tg| [ |X(m, tg g) − tg g|+|tg g − tg| < r and,
by local uniqueness, X(m, tg g)=X(m, tg). Moreover, to prove (2.31), we
observe that ||m − nt ||. [ ||m − ntg ||.+(`m+c̄2) |t − tg| and, on the other
hand, if t=X(m, tg) then |t − tg| [ const |ptg(“tgntg)|−1 |ptg(ntg − m)| [

C ||m − ntg ||., for some C=C(ō). This last bound also prove (2.32), since
||m − nt0

||. < e0 implies t=X(m, t0).
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